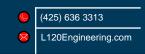


Structural Package for:

Forest Creek Estates Lot 2


5214 Forest Ave SE Mercer Island, WA 98040

Project No: S22201

April 25, 2023

STRUCTURAL ENGINEER L120 ENGINEERING & DESIGN 13150 91ST PL NE KIRKLAND, WA 98034 CONTACT: MANS THURFJELL, PE PHONE: 425-636-3313 MTHURFJELL@L120ENGINEERING.COM

BDC Response: See pages 70-72 for revised retaining wall calulcation

Project Number:	Plan Name:	Sheet Number:
S22201	Forest Creek Estates Lot 2	DC
Engineer:	Specifics:	Date:
НК	Design Criteria	11/10/2022

Gravity Criteria:

ROOF SYSTEM				
Live Load: Snow	25.0	psf		
Dead Load:				
Composite Roofing	2.0	psf		
19/32" Plywood Sheathing	2.5	psf		
Trusses at 24" o.c.	3.0	psf		
Insulation	1.8	psf		
(2) Layers 5/8" GWB	4.4	psf		
Misc/Mech	1.3	psf		
Total	15.0	psf		

EXTERIOR WALL S	YSTEN	A
2x6 at 16" o.c.	1.7	psf
Insulation	1.0	psf
1/2" Plywood Sheathing	1.5	psf
(2) layers 5/8" GWB	4.4	psf
Misc	3.4	psf
Total	12.0	psf

FLOOR SY	STEM			
Live Load: Residential	40.0	psf		
Kesidendai	40.0	psi		
Dead Load:				
Flooring	3.0	psf		
3/4" T & G Plywood	2.5	psf		
Floor Joists at 16" o.c.	2.5	psf		
Insulation	0.5	psf		
(1) Layers 5/8" GWB	2.2	psf		
Miscellaneous	1.3	psf		
Total	12.0	psf		

Code: IBC 2018

INTERIOR WAL	TERIOR WALL SYSTEM		
2x4 at 16" o.c.	1.1	psf	
Insulation	0.5	psf	
(2) Layers 5/8" GWB	4.4	psf	
Misc	2.0	psf	
Total	8.0	psf	

SEISMIC PARAMETERS:

Code Reference: ASCE 7-16

6.5 Bearing Wall System, Wood Structural Panel Walls

R = Mapped Spectral Acceleration, Ss = 1.45 Mapped Spectral Acceleration, S1 = 0.503

Soil Site Class = D

WIND PARAMETERS:

Code Reference: ASCE 7-16 Basic Wind Speed (3 second Gust) = 100 mph Exposure : B Kzt = **1.00**

SOIL PARAMETERS:

Soil Bearing Pressure = 1,500 psf competent native soil or structural fill 1/3 increase for short-term wind or seismic loading is acceptable Frost Depth = in 18

35

pcf

Lateral Wall Pressures:

Unrestrained Active Pressure =

Restrained Active Pressure =

Cantilevered walls pcf

Plate Wall Design/Tank Walls pcf

- **50** Passive Pressure = 250
- Soil Friction Coeff. = 0.35

A This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Search Information

Address:	5214 Forest Ave SE, Mercer Island, WA 9804 USA
Coordinates:	47.55590489999999, -122.227624
Elevation:	119 ft
Timestamp:	2022-11-01T21:44:10.159Z
Hazard Type:	Wind

ASCE 7-16	ASCE 7-10	ASCE 7-05
MRI 10-Year 67 mph	MRI 10-Year 72 mph	ASCE 7-05 Wind Speed 85 mph
MRI 25-Year	MRI 25-Year	
MRI 50-Year	MRI 50-Year	
MRI 100-Year	MRI 100-Year 91 mph	
Risk Category I	Risk Category I 100 mph	
Risk Category II 97 mph	Risk Category II 110 mph	
Risk Category III 104 mph	Risk Category III-IV 115 mph	
Risk Category IV 108 mph		

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility https://hazards.atcouncil.org/#/wind?lat=47.55590489999999&Ing=-122.227624&address=5214 Forest Ave SE%2C Mercer Island%2C WA 98040%2... 1/2 A This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Search Information

Address:	5214 Forest Ave SE, Mercer Island, WA 98040, USA
Coordinates:	47.55590489999999, -122.227624
Elevation:	119 ft
Timestamp:	2022-11-01T21:46:18.271Z
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	II
Site Class:	D-default

Basic Parameters

Name	Value	Description
S _S	1.45	MCE _R ground motion (period=0.2s)
S ₁	0.503	MCE _R ground motion (period=1.0s)
S _{MS}	1.741	Site-modified spectral acceleration value
S _{M1}	* null	Site-modified spectral acceleration value
S _{DS}	1.16	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

* See Section 11.4.8

Additional Information

Name	Value	Description
SDC	* null	Seismic design category
Fa	1.2	Site amplification factor at 0.2s
Fv	* null	Site amplification factor at 1.0s
CR _S	0.902	Coefficient of risk (0.2s)
CR ₁	0.898	Coefficient of risk (1.0s)
DCA	0 601	MCE - pook ground cooperation

https://hazards.atcouncil.org/#/seismic?lat=47.555904899999998lng=-122.227624&address=5214 Forest Ave SE%2C Mercer Island%2C WA 98040... 1/2

11/1/22, 3:46 PM		ATC Hazards by Location
PGA	U.02 I	NICE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA _M	0.745	Site modified peak ground acceleration
TL	6	Long-period transition period (s)
SsRT	1.45	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.608	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	4.088	Factored deterministic acceleration value (0.2s)
S1RT	0.503	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.561	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.593	Factored deterministic acceleration value (1.0s)
PGAd	1.372	Factored deterministic acceleration value (PGA)

* See Section 11.4.8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

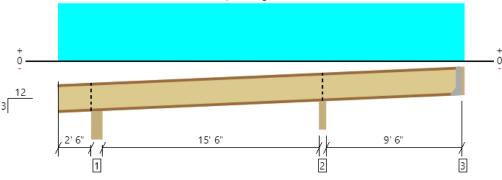
Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

FRAMING CALCULATIONS

BEAM REFERENCE PER PLAN

Forest Creek Lot 2


Roof			
Member Name	Results	Current Solution	Comments
RJ-1	Passed	1 piece(s) 11 7/8" TJI ® 210 @ 24" OC	
RJ-2	Passed	1 piece(s) 11 7/8" TJI® 210 @ 16" OC	Cantilever Reinforcement (PB1) Required
RJ-3	Passed	1 piece(s) 11 7/8" TJI® 210 @ 24" OC	Cantilever Reinforcement (PB1) Required
2nd Floor			
Member Name	Results	Current Solution	Comments
2J-1 (Deck Joist)	Passed	1 piece(s) 2 x 10 DF No.2 @ 16" OC	
2B-1	Passed	1 piece(s) 5 1/4" x 14" 2.2E Parallam® PSL	
2B-2	Passed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL	
2B-3	Passed	1 piece(s) 3 1/2" x 18" 2.2E Parallam® PSL	
2B-4	Passed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL	
2B-4.1	Passed	1 piece(s) 3 1/2" x 18" 2.2E Parallam® PSL	
2B-5	Passed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL	
2B-6	Passed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL	
2B-6.1	Passed	1 piece(s) 5 1/4" x 9 1/2" 2.2E Parallam® PSL	
2B-7	Passed	1 piece(s) 5 1/2" x 16 1/2" 24F-V4 DF Glulam	
2H-1	Passed	1 piece(s) 4 x 10 DF No.1	
2H-1.1 (4x6 Check)	Failed	1 piece(s) 4 x 6 DF No.1 (Plank) 6x6 used on plan	
2H-1.1 (6x6 Check)	Passed	1 piece(s) 6 x 6 DF No.1	
2H-2	Passed	1 piece(s) 2 x 8 DF No.2	
2H-3 (High)	Passed	1 piece(s) 6 x 8 DF No.1	
2H-3 (Low)	Passed	1 piece(s) 6 x 6 DF No.1	
2H-4	Passed	1 piece(s) 4 x 6 DF No.2	
2H-5	Passed	2 piece(s) 2 x 8 DF No.2	
2H-6	Passed	1 piece(s) 5 1/2" x 7 1/2" 24F-V4 DF Glulam	
2H-7	Passed	2 piece(s) 2 x 8 DF No.2	
2H-8	Passed	3 piece(s) 2 x 8 DF No.2	
2B-8	Passed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL	
2B-9	Passed	1 piece(s) 3 1/2" x 18" 2.2E Parallam® PSL	
2B-10	Passed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL	
Low Roof			
Member Name	Results	Current Solution	Comments
LRJ-1	Passed	1 piece(s) 2 x 8 DF No.2 @ 16" OC	
LRB-1	Passed	1 piece(s) 4 x 8 DF No.2	
1st Floor	-		
Member Name	Results	Current Solution	Comments
1B-1 (Garage Header)	Passed	1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam	
1H-1	Passed	1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam	
1H-2	Passed	1 piece(s) 6 x 10 DF No.2	
1H-3	Passed	2 piece(s) 2 x 8 DF No.2	
1H-4	Passed	3 piece(s) 2 x 10 DF No.2	
1H-5	Passed	1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam	
Basement			
Member Name	Results	Current Solution	Comments
BB-1	Passed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL	
BH-1	Passed	1 piece(s) 3 1/2" x 7 1/2" 24F-V4 DF Glulam	
BH-2	Passed	2 piece(s) 2 x 8 DF No.2	

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		Weyerhaeuser

11/10/2022 4:12:44 PM UTC ForteWEB v3.4 File Name: Forest Creek Lot 2

Roof, RJ-1 1 piece(s) 11 7/8" TJI ® 210 @ 24" OC

Sloped Length: 29' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1332 @ 18' 7 1/4"	2543 (3.50")	Passed (52%)	1.15	1.0 D + 1.0 S (Adj Spans)
Shear (lbs)	702 @ 18' 5 1/2"	1903	Passed (37%)	1.15	1.0 D + 1.0 S (Adj Spans)
Moment (Ft-lbs)	-1877 @ 18' 7 1/4"	4364	Passed (43%)	1.15	1.0 D + 1.0 S (Adj Spans)
Live Load Defl. (in)	0.164 @ 10' 9/16"	0.818	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.256 @ 10' 5/16"	1.091	Passed (L/766)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 3/12

Member Length : 29' 4 3/8"

Deflection criteria: LL (L/240) and TL (L/180).

• Overhang deflection criteria: LL (2L/240) and TL (2L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Beveled Plate - HF	5.50"	5.50"	3.50"	293	480	773	Blocking
2 - Beveled Plate - HF	3.50"	3.50"	3.50"	505	827	1332	Blocking
3 - Hanger on 11 7/8" HF ledgerOnMasonry	1.50"	Hanger ¹	1.75" / - 2	80	180	260	See note 1

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 10" o/c	
Bottom Edge (Lu)	5' 5" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
3 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			

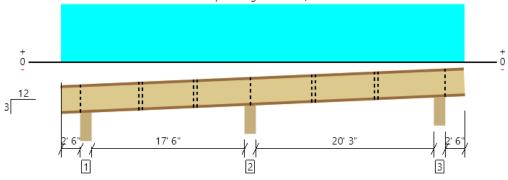
• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Load	Location	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 28' 4 1/2"	24"	15.0	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www weyerhaeuser.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

11/10/2022 4:12:44 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Forest Creek Lot 2 Page 2 / 47

Roof, RJ-2 1 piece(s) 11 7/8" TJI ® 210 @ 16" OC

Sloped Length: 45' 5 13/16"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1287 @ 20' 8 1/4"	3041 (5.25")	Passed (42%)	1.15	1.0 D + 1.0 S (Adj Spans)
Shear (lbs)	640 @ 20' 11"	1903	Passed (34%)	1.15	1.0 D + 1.0 S (Adj Spans)
Moment (Ft-Ibs)	-2489 @ 20' 8 1/4"	4364	Passed (57%)	1.15	1.0 D + 1.0 S (Adj Spans)
Live Load Defl. (in)	0.299 @ 31' 10 3/4"	1.067	Passed (L/857)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.450 @ 32' 1/8"	1.423	Passed (L/569)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 3/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Overhang deflection criteria: LL (2L/240) and TL (2L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Permanent bracing at third points in the back span or a direct applied ceiling over the entire back span length is required at the left and right span of the member. See literature detail (PB1) For clarification.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Beveled Plate - HF	5.50"	5.50"	3.50"	193	339	533	Blocking
2 - Beveled Plate - HF	5.50"	5.50"	3.50"	488	799	1287	Blocking
3 - Beveled Plate - HF	5.50"	5.50"	3.50"	228	384	612	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	5' 6" o/c					
Bottom Edge (Lu)	4' 8" o/c					
•TJI joists are only analyzed using Maximum Allowable bracing solutions.						

16"

Maximum allowable bracing intervals based on applied load.

 Vertical Load
 Location
 Spacing
 Dead
 Snow

 0.900
 (1.15)
 Comments

0 to 44' 1 1/2"

Weyerhaeuser Notes

1 - Uniform (PSF)

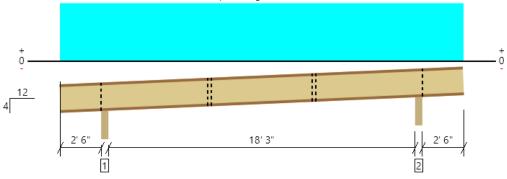
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

25.0

Roof Load

15.0

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Harrison Kliegl	
L120 Engineering	
(425) 636-3313	
hkliegl@l120engineering.com	

Member Length : 45' 8 3/4"

Roof, RJ-3 1 piece(s) 11 7/8" TJI ® 210 @ 24" OC

Sloped Length: 25' 1 1/2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs) 977 @ 2' 7 3/4" 2600 (3.50") Passed (38%) 1.15 1.0 D + 1.0 S (Adj Spans) Shear (lbs) 717 @ 2' 9 1/2" 1903 Passed (38%) 1.15 1.0 D + 1.0 S (Adj Spans) Moment (Ft-lbs) 3309 @ 11' 11" 4364 Passed (76%) 1.15 1.0 D + 1.0 S (Alt Spans) Live Load Defl. (in) 0.485 @ 11' 11' 0.977 Passed (L/484) 1.0 D + 1.0 S (Alt Spans) Total Load Defl. (in) 0.777 @ 11' 11" 1.303 Passed (L/302) 1.0 D + 1.0 S (Alt Spans) --

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 4/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Overhang deflection criteria: LL (2L/240) and TL (2L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Permanent bracing at third points in the back span or a direct applied ceiling over the entire back span length is required at the left and right span of the member. See literature detail (PB1) For clarification.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Beveled Plate - HF	3.50"	3.50"	3.50"	377	601	977	Blocking
2 - Beveled Plate - HF	3.50"	3.50"	3.50"	377	601	977	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	3' 11" o/c					
Bottom Edge (Lu)	8' 8" o/c					
•TJI joists are only analyzed using Maximum Allowable bracing solutions.						

• I JI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

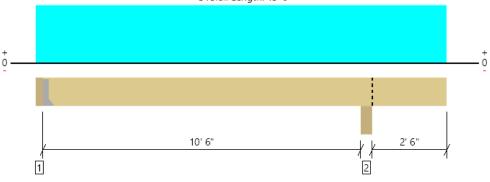
			Dead	Snow	
Vertical Load	Location	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 23' 10"	24"	15.0	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com	



Member Length : 25' 5 7/16"

2nd Floor, 2J-1 (Deck Joist) 1 piece(s) 2 x 10 DF No.2 @ 16" OC

Overall Length: 13' 9"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	585 @ 3 1/2"	1406 (1.50")	Passed (42%)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Shear (lbs)	503 @ 10' 1/4"	1665	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1486 @ 5' 6 13/16"	2029	Passed (73%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.156 @ 5' 7 11/16"	0.268	Passed (L/823)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Total Load Defl. (in)	0.199 @ 5' 7 3/8"	0.536	Passed (L/647)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

• No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on 9 1/4" DF beam	3.50"	Hanger ¹	1.50"	142	453/-4	183	618	See note 1
2 - Beam - GLB	5.50"	5.50"	1.50"	225	675	281	943	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	Continuous	
Bottom Edge (Lu)	End Bearing Points	

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
1 - Face Mount Hanger	LU28	1.50"	N/A	8-10dx1.5	6-10dx1.5				
- Defer to manufactures notes and instructions for money installation and use of all connectors									

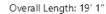
Refer to manufacturer notes and instructions for proper installation and use of all connectors.

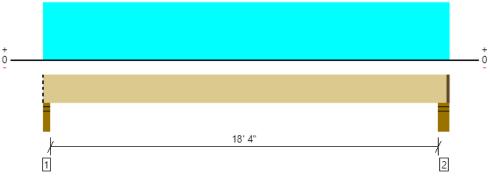
			Dead	Floor Live	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Uniform (PSF)	0 to 13' 9"	16"	20.0	60.0	25.0	Deck Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Job Notes Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com



11/10/2022 4:12:44 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Forest Creek Lot 2 Page 5 / 47

2nd Floor, 2B-1 1 piece(s) 5 1/4" x 14" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5419 @ 2"	7442 (3.50")	Passed (73%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4584 @ 1' 5 1/2"	14210	Passed (32%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	24733 @ 9' 5 1/2"	40743	Passed (61%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.431 @ 9' 5 1/2"	0.465	Passed (L/517)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.617 @ 9' 5 1/2"	0.929	Passed (L/361)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	2.55"	1636	3783	5419	Blocking
2 - Stud wall - HF	5.50"	4.00"	2.56"	1662	3850	5512	1 1/2" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	18' 11" o/c	
Bottom Edge (Lu)	18' 11" o/c	

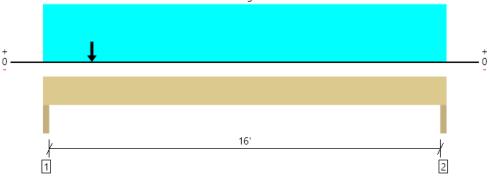
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 18' 11 1/2"	N/A	23.0		
1 - Uniform (PSF)	0 to 19' 1" (Front)	10'	15.0	40.0	Floor Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	



2nd Floor, 2B-2 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7718 @ 1 1/2"	9844 (3.00")	Passed (78%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	7115 @ 1' 9"	18270	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	17127 @ 6' 4 7/8"	65252	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.072 @ 7' 7 1/4"	0.542	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.167 @ 7' 10 3/8"	0.813	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 4.8% decrease in the moment capacity has been added to account for lateral stability.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - HF	3.00"	3.00"	2.35"	3488	4231	619	7718	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	2209	1269	619	3625	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

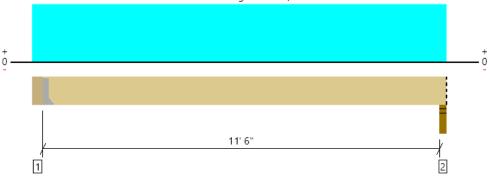
			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 16' 6"	N/A	29.5			
1 - Uniform (PSF)	0 to 16' 6" (Front)	1'	15.0	40.0		Floor Load
2 - Uniform (PSF)	0 to 16' 6" (Back)	1'	20.0	60.0	25.0	Deck Load
3 - Uniform (PLF)	0 to 16' 6" (Top)	N/A	150.0	-		Wall Load Above
4 - Uniform (PSF)	0 to 16' 6" (Top)	2'	15.0	-	25.0	Roof Load From Above
5 - Point (lb)	2' (Top)	N/A	1662	3850	-	Linked from: 2B-1, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Harrison Kliegl	
L120 Engineering	
(425) 636-3313	
hklieal@120enaineerina.com	


11/10/2022 4:12:44 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Forest Creek Lot 2 Page 7 / 47

2nd Floor, 2B-3 1 piece(s) 3 1/2" x 18" 2.2E Parallam® PSL

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1576 @ 5 1/4"	3281 (1.50")	Passed (48%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	1094 @ 1' 11 1/4"	12180	Passed (9%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	4285 @ 6' 3"	43665	Passed (10%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.013 @ 6' 3"	0.291	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.037 @ 6' 3"	0.581	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on 18" PSL beam	5.25"	Hanger ¹	1.50"	1077	500	313	1686	See note 1
2 - Stud wall - HF	3.50"	3.50"	1.50"	1039	478	299	1621	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	11' 10" o/c					
Bottom Edge (Lu)	11' 10" o/c					
Maximum allowable bracing intervals based on applied load.						

Connector: Simpson Strong-Tie

1 - Face Mount Hanger THA413 1.75" N/A 14-10d 4-10d	Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
			1.75"				

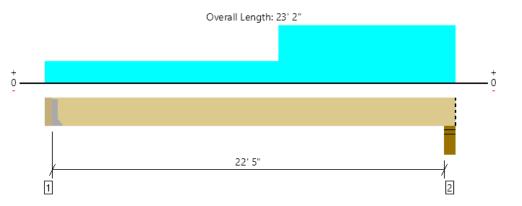
• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	5 1/4" to 12' 2 3/4"	N/A	19.7			
1 - Uniform (PSF)	0 to 12' 2 3/4" (Front)	2'	12.0	40.0	-	Floor Load
2 - Uniform (PLF)	0 to 12' 2 3/4" (Top)	N/A	100.0	-	-	Wall Load Above
3 - Uniform (PSF)	0 to 12' 2 3/4" (Top)	2'	15.0	-	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Job Notes Harrison Klieg L120 Engineering (425) 636-3313 hkliegl@I120engineering.com

11/10/2022 4:12:44 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Forest Creek Lot 2 Page 8 / 47

2nd Floor, 2B-4 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5734 @ 3 1/2"	5734 (1.75")	Passed (100%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	7624 @ 21' 2 1/2"	21011	Passed (36%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	41991 @ 13' 9 9/16"	75322	Passed (56%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.394 @ 11' 10 1/2"	0.564	Passed (L/686)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.711 @ 12'	1.127	Passed (L/380)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on 18" PSL beam	3.50"	Hanger ¹	1.75"	2344	3374	1285	5839	See note 1
2 - Stud wall - HF	5.50"	5.50"	4.53"	4639	1860	4807	9639	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	22' 11" o/c					
Bottom Edge (Lu) 22' 11" o/c						
•Maximum allowable bracing intervals based on applied load.						

Connector: Simpson Strong-Tie

Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 Face Maintel Unities Fa(14) 1 - 0000 1 - 00000 1 - 000000 1 - 00000000000000000000000000000000000	1 3						
	Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger HGUS5.50/14 4.00 N/A 66-10d 22-10d	1 - Face Mount Hanger	HGUS5.50/14	4.00"	N/A	66-10d	22-10d	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

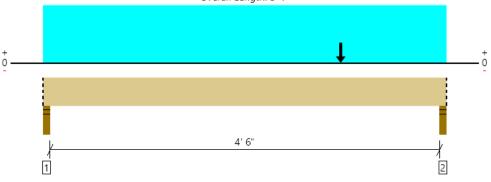
			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	3 1/2" to 23' 2"	N/A	29.5			
1 - Uniform (PSF)	0 to 13' (Front)	8' 6"	12.0	40.0	-	Floor Load
2 - Uniform (PSF)	13' to 23' 2" (Back)	2'	12.0	40.0	-	Floor Load
3 - Uniform (PLF)	13' to 23' 2" (Top)	N/A	100.0	-	-	Wall Load Above
4 - Uniform (PLF)	13' to 23' 2" (Top)	N/A	366.0	-	599.3	Linked from: RJ-2, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rin Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Harrison Klieg L120 Engineering (425) 636-3313 hkliegl@l120engineering.com



11/10/2022 4:12:44 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Forest Creek Lot 2 Page 9 / 47

2nd Floor, 2B-4.1 1 piece(s) 3 1/2" x 18" 2.2E Parallam® PSL

Overall Length: 5' 1"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4668 @ 4' 11"	4961 (3.50")	Passed (94%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	2659 @ 3' 3 1/2"	12180	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	5291 @ 3' 9"	43665	Passed (12%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.007 @ 3' 9"	0.119	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.012 @ 3' 9"	0.237	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Su				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	687	1032	316	1719	Blocking
2 - Stud wall - HF	3.50"	3.50"	3.29"	1879	2749	969	4668	Blocking
Blocking Panels are assumed to carry no load	s applied dire	ctly above the	m and the ful	load is annli	ed to the mer	nher heina de	signed	

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 1" o/c	
Bottom Edge (Lu)	5' 1" o/c	

•Maximum allowable bracing intervals based on applied load.

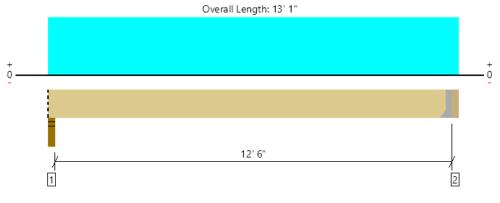
			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 1"	N/A	19.7			
1 - Uniform (PSF)	0 to 5' 1" (Front)	2'	12.0	40.0	-	Floor Load
2 - Point (lb)	3' 9" (Front)	N/A	2344	3374	1285	Linked from: 2B-4, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com	



11/10/2022 4:12:44 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Forest Creek Lot 2 Page 10 / 47

2nd Floor, 2B-5 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4073 @ 12' 9 1/2"	4922 (1.50")	Passed (83%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	3105 @ 11' 3 1/2"	21011	Passed (15%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	12854 @ 6' 5 3/4"	75322	Passed (17%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.042 @ 6' 5 3/4"	0.316	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.080 @ 6' 5 3/4"	0.631	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.97"	2005	1361	1539	4180	Blocking
2 - Hanger on 18" PSL beam	3.50"	Hanger ¹	1.50"	2036	1387	1568	4252	See note 1

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	12' 10" o/c					
Bottom Edge (Lu) 12' 10" o/c						
Maximum allowable bracing intervals based on applied load.						

Connector: Simpson Strong-Tie Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 2 - Face Mount Hanger HU616 2.50" N/A 26-16d 12-16d 12-16d

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

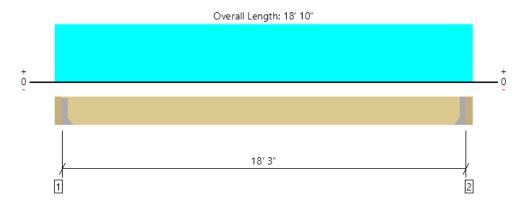
			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 9 1/2"	N/A	29.5			
1 - Uniform (PSF)	0 to 13' 1" (Back)	5' 3"	12.0	40.0	-	Floor Load
2 - Uniform (PSF)	0 to 13' 1" (Front)	1'	15.0	-	25.0	Low Roof Load
3 - Uniform (PLF)	0 to 13' 1" (Top)	N/A	100.0	-	-	Wall Load Above
4 - Uniform (PSF)	0 to 13' 1" (Top)	8' 6"	12.0	-	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com


11/10/2022 4:12:44 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Forest Creek Lot 2 Page 11 / 47

2nd Floor, 2B-6 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4474 @ 3 1/2"	4922 (1.50")	Passed (91%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	3443 @ 1' 9 1/2"	18270	Passed (19%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	18798 @ 9' 5"	65497	Passed (29%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.127 @ 9' 5"	0.456	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.241 @ 9' 5"	0.913	Passed (L/910)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on 18" PSL beam	3.50"	Hanger ¹	1.50"	2172	2072	1177	4608	See note 1
2 - Hanger on 18" PSL beam	3.50"	Hanger ¹	1.50"	2172	2072	1177	4608	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	18' 3" o/c					
Bottom Edge (Lu)	18' 3" o/c					
-Maximum allowable brasing intervals based on applied load						

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HGUS5.50/14	4.00"	N/A	66-10d	22-10d	
2 - Face Mount Hanger	HGUS5.50/14	4.00"	N/A	66-10d	22-10d	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	3 1/2" to 18' 6 1/2"	N/A	29.5			
1 - Uniform (PSF)	0 to 18' 10" (Front)	1'	12.0	40.0	-	Floor Load
2 - Uniform (PSF)	0 to 18' 10" (Back)	3'	20.0	60.0	25.0	Deck Load
3 - Uniform (PLF)	0 to 18' 10" (Top)	N/A	100.0	-	-	Wall Load Above
4 - Uniform (PSF)	0 to 18' 10" (Top)	2'	15.0	-	25.0	Roof Load

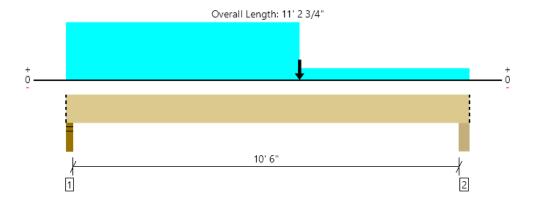
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Harrison Kliegl
 L120 Engineering


 (425) 636-3313
 hkliegl@l120engineering.com

11/10/2022 4:12:44 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Forest Creek Lot 2 Page 12 / 47

2nd Floor, 2B-6.1 1 piece(s) 5 1/4" x 9 1/2" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4312 @ 2"	7442 (3.50")	Passed (58%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3747 @ 10'	9643	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	16006 @ 6' 6"	19585	Passed (82%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.227 @ 5' 6 3/4"	0.269	Passed (L/569)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.389 @ 5' 7 3/8"	0.538	Passed (L/332)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length		Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	2.03"	1553	2759	506	4312	Blocking
2 - Beam - HF	5.25"	5.25"	1.84"	1669	2196	789	3908	Blocking
Blocking Panels are assumed to carry no load	s applied dire	ctly above the	m and the ful	load is annli	ed to the mer	nher heina de	signed	

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 3" o/c	
Bottom Edge (Lu)	11' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

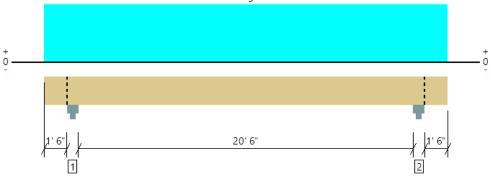
			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 11' 2 3/4"	N/A	15.6			
1 - Uniform (PSF)	0 to 6' 6" (Front)	10'	12.0	40.0	-	Floor Load
2 - Uniform (PSF)	6' 6" to 11' 2 3/4" (Front)	1'	20.0	60.0	25.0	Deck Load
3 - Point (lb)	6' 6" (Front)	N/A	2172	2072	1177	Linked from: 2B-6, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Harrison Kliegl	
L120 Engineering	
(425) 636-3313	
hkliegl@l120engineering.com	



11/10/2022 4:12:44 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Forest Creek Lot 2 Page 13 / 47

2nd Floor, 2B-7 1 piece(s) 5 1/2" x 16 1/2" 24F-V4 DF Glulam

Overall Length: 24' 5"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6427 @ 1' 8 3/4"	19663 (5.50")	Passed (33%)		1.0 D + 0.75 L + 0.75 S (Adj Spans)
Shear (lbs)	4481 @ 3' 4"	16033	Passed (28%)	1.00	1.0 D + 1.0 L (Adj Spans)
Pos Moment (Ft-lbs)	27354 @ 12' 2 1/2"	48036	Passed (57%)	1.00	1.0 D + 1.0 L (Alt Spans)
Neg Moment (Ft-Ibs)	-751 @ 1' 8 3/4"	38474	Passed (2%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.446 @ 12' 2 1/2"	0.524	Passed (L/564)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Total Load Defl. (in)	0.607 @ 12' 2 1/2"	1.048	Passed (L/414)		1.0 D + 0.75 L + 0.75 S (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

Deflection criteria: LL (L/480) and TL (L/240).

Overhang deflection criteria: LL (2L/480) and TL (2L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 0.96 that was calculated using length L = 20' 10 1/2".

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 1' 10 $1/2^{"}$.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Column Cap - steel	5.50"	5.50"	1.80"	1734	4421	1837	6427	Blocking
2 - Column Cap - steel	5.50"	5.50"	1.80"	1734	4421	1837	6427	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

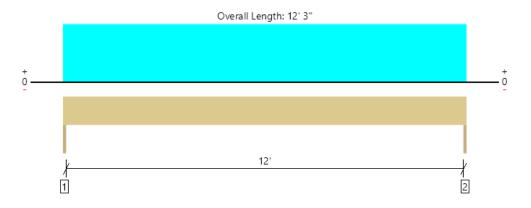
Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	24' 5" o/c						
Bottom Edge (Lu) 24' 5" o/c							
•Maximum allowable bracing intervals based on applied load.							

 Maximum 	allowable	bracing	intervals	based	on appl	ied loa	d.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 24' 5"	N/A	22.1			
1 - Uniform (PSF)	0 to 24' 5" (Front)	6'	20.0	60.0	25.0	Deck Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com

2nd Floor, 2H-1 1 piece(s) 4 x 10 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1030 @ 0	3281 (1.50")	Passed (31%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	880 @ 10 3/4"	4468	Passed (20%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	3155 @ 6' 1 1/2"	5577	Passed (57%)	1.15	1.0 D + 1.0 S (All Spans)
Vert Live Load Defl. (in)	0.129 @ 6' 1 1/2"	0.408	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Vert Total Load Defl. (in)	0.217 @ 6' 1 1/2"	0.613	Passed (L/677)		1.0 D + 1.0 S (All Spans)
Lat Member Reaction (lbs)	176 @ 12' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	164 @ 5"	6216	Passed (3%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	539 @ mid-span	3324	Passed (16%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.182 @ mid-span	1.225	Passed (L/810)		1.0 D + 0.6 W
Bi-Axial Bending	0.48	1.00	Passed (48%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Lateral deflection criteria: Wind (L/120)

• A 2.8% decrease in the moment capacity has been added to account for lateral stability.

• Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	418	613	1030	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	418	613	1030	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Lateral Connections									
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing			
Left	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	3				
Right	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	3				

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 3"	N/A	8.2		
1 - Uniform (PSF)	0 to 12' 3"	4'	15.0	25.0	Roof Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	2'	24.0	

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib.
 IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuss

2nd Floor, 2H-1.1 (4x6 Check) 1 piece(s) 4 x 6 DF No.1 (Plank)

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	152 @ 0	5156 (1.50")	Passed (3%)		1.0 D (All Spans)
Shear (lbs)	142 @ 5"	2079	Passed (7%)	0.90	1.0 D (All Spans)
Moment (Ft-lbs)	467 @ 6' 1 1/2"	1150	Passed (41%)	0.90	1.0 D (All Spans)
Vert Live Load Defl. (in)	0.000 @ 0	0.408	Passed (2L/999+)		1.0 D (All Spans)
Vert Total Load Defl. (in)	0.377 @ 6' 1 1/2"	0.313	Failed (L/390)		1.0 D (All Spans)
Lat Member Reaction (lbs)	352 @ 12' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	319 @ 7"	3696	Passed (9%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-Ibs)	1079 @ mid-span	2990	Passed (36%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.247 @ mid-span	1.225	Passed (L/595)		1.0 D + 0.6 W
Bi-Axial Bending	0.59	1.00	Passed (59%)	1.60	1.0 D + 0.6 W

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (5/16").

Lateral deflection criteria: Wind (L/120)

• Member has been designed in flat (plank) orientation.

• Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)		
Supports	Total	Available	Required	Dead	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	152	152	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	152	152	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

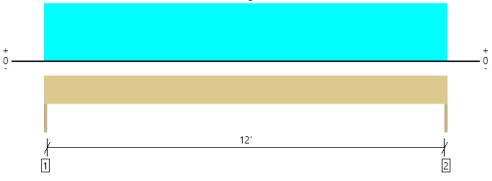
Lateral Connections								
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing		
Left	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	5			
Right	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	5			

Vertical Loads	Location	Tributary Width	Dead (0.90)	Comments
0 - Self Weight (PLF)	0 to 12' 3"	N/A	4.9	
1 - Uniform (PLF)	0 to 12' 3"	N/A	20.0	Clerestory Window Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	4'	24.0	

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area

determined using full member span and trib. width.


• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313		
hkliegl@I120engineering.com		Weyerhaeuser

2nd Floor, 2H-1.1 (6x6 Check) 1 piece(s) 6 x 6 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	169 @ 0	5156 (1.50")	Passed (3%)		1.0 D (All Spans)
Shear (lbs)	153 @ 7"	3086	Passed (5%)	0.90	1.0 D (All Spans)
Moment (Ft-lbs)	519 @ 6' 1 1/2"	2496	Passed (21%)	0.90	1.0 D (All Spans)
Vert Live Load Defl. (in)	0.000 @ 0	0.408	Passed (2L/999+)		1.0 D (All Spans)
Vert Total Load Defl. (in)	0.115 @ 6' 1 1/2"	0.313	Passed (L/999+)		1.0 D (All Spans)
Lat Member Reaction (lbs)	352 @ 12' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	319 @ 7"	5485	Passed (6%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	1079 @ mid-span	4437	Passed (24%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.167 @ mid-span	1.225	Passed (L/879)		1.0 D + 0.6 W
Bi-Axial Bending	0.36	1.00	Passed (36%)	1.60	1.0 D + 0.6 W

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (5/16").

Lateral deflection criteria: Wind (L/120)

• Applicable calculations are based on NDS.

• This product has a square cross section. The analysis engine has checked both edge and plank orientations to allow for either installation.

	Bearing Length			Loads to Supports (lbs)		
Supports	Total	Available	Required	Dead	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	169	169	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	169	169	None

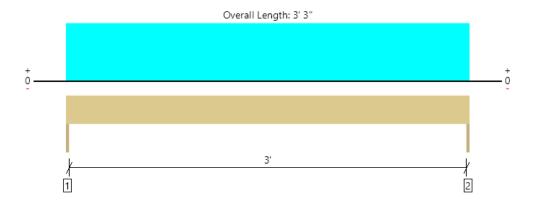
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Lateral Connections								
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing		
Left	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	5			
Right	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	5			

Vertical Loads	Location	Tributary Width	Dead (0.90)	Comments
0 - Self Weight (PLF)	0 to 12' 3"	N/A	7.7	
1 - Uniform (PLF)	0 to 12' 3"	N/A	20.0	Clerestory Window Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	4'	24.0	

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area


determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313		
hkliegl@l120engineering.com		Weyerhaeuser

2nd Floor, 2H-2 1 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	728 @ 0	1406 (1.50")	Passed (52%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	401 @ 8 3/4"	1501	Passed (27%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	591 @ 1' 7 1/2"	1308	Passed (45%)	1.15	1.0 D + 1.0 S (All Spans)
Vert Live Load Defl. (in)	0.009 @ 1' 7 1/2"	0.108	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Vert Total Load Defl. (in)	0.015 @ 1' 7 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Lat Member Reaction (lbs)	52 @ 3' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	44 @ 3"	2088	Passed (2%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	42 @ mid-span	450	Passed (9%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.017 @ mid-span	0.325	Passed (L/999+)		1.0 D + 0.6 W
Bi-Axial Bending	0.36	1.00	Passed (36%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Lateral deflection criteria: Wind (L/120)

• A 3.8% decrease in the moment capacity has been added to account for lateral stability.

• Applicable calculations are based on NDS.

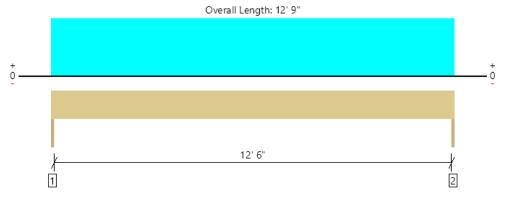
	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	281	447	728	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	281	447	728	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Lateral Connections									
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing			
Left	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	2				
Right	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	2				

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 3"	N/A	2.8		
1 - Uniform (PSF)	0 to 3' 3"	11'	15.5	25.0	Roof Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	2'	26.5	


ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib.
 IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Job Notes	
	Weverhaeuser
	Job Notes

2nd Floor, 2H-3 (High) 1 piece(s) 6 x 8 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	577 @ 0	5156 (1.50")	Passed (11%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	509 @ 9"	5376	Passed (9%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1838 @ 6' 4 1/2"	5930	Passed (31%)	1.15	1.0 D + 1.0 S (All Spans)
Vert Live Load Defl. (in)	0.096 @ 6' 4 1/2"	0.425	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Vert Total Load Defl. (in)	0.174 @ 6' 4 1/2"	0.637	Passed (L/880)		1.0 D + 1.0 S (All Spans)
Lat Member Reaction (lbs)	273 @ 12' 9"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	248 @ 7"	7480	Passed (3%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	872 @ mid-span	6050	Passed (14%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.107 @ mid-span	1.275	Passed (L/999+)		1.0 D + 0.6 W
Bi-Axial Bending	0.30	1.00	Passed (30%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Lateral deflection criteria: Wind (L/120)

• A 0.8% decrease in the moment capacity has been added to account for lateral stability.

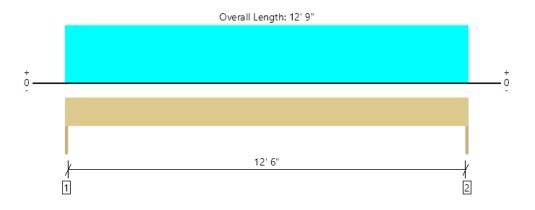
• Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	258	319	577	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	258	319	577	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Lateral Connections									
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing			
Left	2X	Hem Fir	Nails	8d (0.113" x 2 1/2") (Toe)	4				
Right	2X	Hem Fir	Nails	8d (0.113" x 2 1/2") (Toe)	4				

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 9"	N/A	10.4		
1 - Uniform (PSF)	0 to 12' 9"	2'	15.0	25.0	Roof Load


			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	3'	23.8	

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib.
 IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313		
hkliegl@l120engineering.com		Weyerhaeuser

2nd Floor, 2H-3 (Low) 1 piece(s) 6 x 6 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	368 @ 0	5156 (1.50")	Passed (7%)		1.0 D (All Spans)
Shear (lbs)	334 @ 7"	3086	Passed (11%)	0.90	1.0 D (All Spans)
Moment (Ft-lbs)	1172 @ 6' 4 1/2"	2496	Passed (47%)	0.90	1.0 D (All Spans)
Vert Live Load Defl. (in)	0.000 @ 0	0.425	Passed (2L/999+)		1.0 D (All Spans)
Vert Total Load Defl. (in)	0.281 @ 6' 4 1/2"	0.313	Passed (L/544)		1.0 D (All Spans)
Lat Member Reaction (lbs)	534 @ 12' 9"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	486 @ 7"	5485	Passed (9%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	1703 @ mid-span	4437	Passed (38%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.286 @ mid-span	1.275	Passed (L/535)		1.0 D + 0.6 W
Bi-Axial Bending	0.65	1.00	Passed (65%)	1.60	1.0 D + 0.6 W

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (5/16").

Lateral deflection criteria: Wind (L/120)

• Applicable calculations are based on NDS.

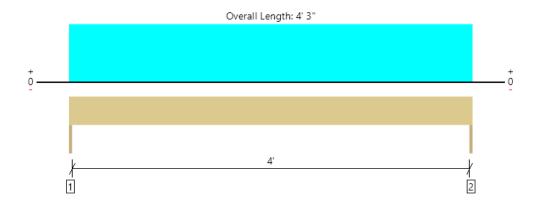
• This product has a square cross section. The analysis engine has checked both edge and plank orientations to allow for either installation.

	B	earing Leng	th	Loads to (Ib		
Supports	Total	Available	Required	Dead	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	368	368	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	368	368	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Lateral Connections								
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing		
Left	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	7			
Right	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	7			

			Dead	
Vertical Loads	Location	Tributary Width	(0.90)	Comments
0 - Self Weight (PLF)	0 to 12' 9"	N/A	7.7	
1 - Uniform (PLF)	0 to 12' 9"	N/A	50.0	Window Load


				Wind	
	Lateral Load	Location	Tributary Width	(1.60)	Comments
ſ	1 - Uniform (PSF)	Full Length	6'	23.3	

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.
 IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuse

2nd Floor, 2H-4 1 piece(s) 4 x 6 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	858 @ 0	3281 (1.50")	Passed (26%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	623 @ 7"	2657	Passed (23%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	912 @ 2' 1 1/2"	1969	Passed (46%)	1.15	1.0 D + 1.0 S (All Spans)
Vert Live Load Defl. (in)	0.024 @ 2' 1 1/2"	0.142	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Vert Total Load Defl. (in)	0.038 @ 2' 1 1/2"	0.213	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Lat Member Reaction (lbs)	68 @ 4' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (Ibs)	54 @ 5"	3696	Passed (1%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-Ibs)	72 @ mid-span	1839	Passed (4%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.005 @ mid-span	0.425	Passed (L/999+)		1.0 D + 0.6 W
Bi-Axial Bending	0.31	1.00	Passed (31%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Lateral deflection criteria: Wind (L/120)

• A 0.5% decrease in the moment capacity has been added to account for lateral stability.

• Applicable calculations are based on NDS.

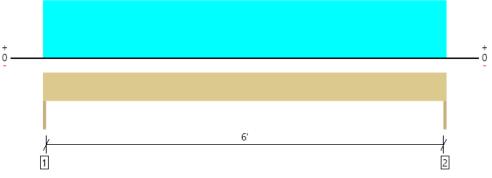
	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	318	540	858	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	318	540	858	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Lateral Connectio	Lateral Connections									
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing				
Left	2X	Hem Fir	Nails	8d (0.113" x 2 1/2") (Toe)	2					
Right	2X	Hem Fir	Nails	8d (0.113" x 2 1/2") (Toe)	2					

Vertical Loads	Location	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 4' 3"	N/A	4.9		
1 - Uniform (PLF)	0 to 4' 3"	N/A	144.8		Linked from: RJ-2, Support 1

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	2'	26.5	


• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width. • IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		Weyerhaeuser

2nd Floor, 2H-5 2 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	892 @ 0	2813 (1.50")	Passed (32%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	684 @ 8 3/4"	2610	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1394 @ 3' 1 1/2"	2277	Passed (61%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.039 @ 3' 1 1/2"	0.208	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.064 @ 3' 1 1/2"	0.313	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 3.7% decrease in the moment capacity has been added to account for lateral stability.

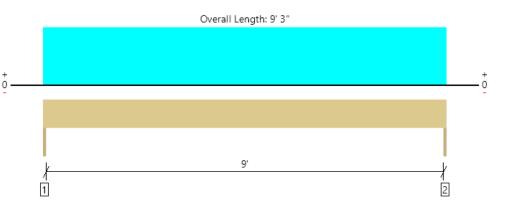
Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	345	547	892	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	345	547	892	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	5.5		
1 - Uniform (PSF)	0 to 6' 3"	7'	15.0	25.0	Roof Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com	

2nd Floor, 2H-6 1 piece(s) 5 1/2" x 7 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2174 @ 0	5363 (1.50")	Passed (41%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1821 @ 9"	7288	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	5027 @ 4' 7 1/2"	10252	Passed (49%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.136 @ 4' 7 1/2"	0.308	Passed (L/816)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.222 @ 4' 7 1/2"	0.463	Passed (L/499)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 0.6% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 9' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

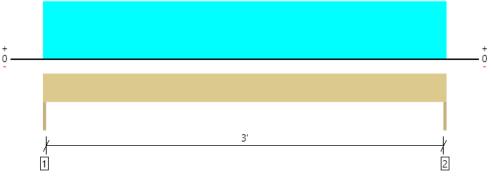
	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	844	1330	2174	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	844	1330	2174	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 9' 3"	N/A	10.0		
1 - Uniform (PSF)	0 to 9' 3"	11' 6"	15.0	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

2nd Floor, 2H-7 2 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1049 @ 0	2813 (1.50")	Passed (37%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	578 @ 8 3/4"	2610	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	852 @ 1' 7 1/2"	2327	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.007 @ 1' 7 1/2"	0.108	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.011 @ 1' 7 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 1.6% decrease in the moment capacity has been added to account for lateral stability.

Applicable calculations are based on NDS.

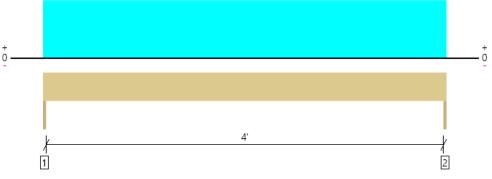
	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	399	650	1049	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	399	650	1049	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 3"	N/A	5.5		
1 - Uniform (PSF)	0 to 3' 3"	16'	15.0	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

2nd Floor, 2H-8 3 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2511 @ 0	4219 (1.50")	Passed (60%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1649 @ 8 3/4"	3915	Passed (42%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2668 @ 2' 1 1/2"	3490	Passed (76%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.023 @ 2' 1 1/2"	0.142	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.038 @ 2' 1 1/2"	0.213	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 1.6% decrease in the moment capacity has been added to account for lateral stability.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	970	1541	2511	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	970	1541	2511	None

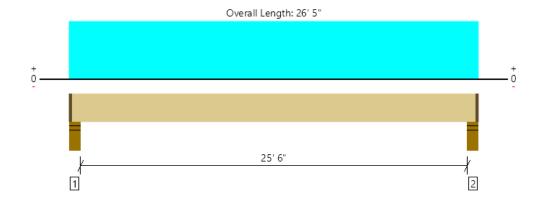
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 4' 3"	N/A	8.3		
1 - Uniform (PSF)	0 to 4' 3"	29'	15.5	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser


ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

2nd Floor, 2B-8 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3677 @ 4"	8505 (4.00")	Passed (43%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	2965 @ 1' 11 1/2"	18270	Passed (16%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	21842 @ 13' 2 1/2"	65497	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.181 @ 13' 2 1/2"	0.644	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.521 @ 13' 2 1/2"	1.288	Passed (L/593)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	5.50"	4.00"	1.73"	2420	1057	660	3708	1 1/2" Rim Board
2 - Stud wall - HF	5.50"	4.00"	1.73"	2420	1057	660	3708	1 1/2" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Top Edge (Lu) 26' 2" o/c	ateral Bracing	Bracing Intervals	Comments
10p Edge (Ed) 20 2 0/0	op Edge (Lu)	26' 2" o/c	
Bottom Edge (Lu) 26' 2" o/c	ottom Edge (Lu)	26' 2" o/c	

•Maximum allowable bracing intervals based on applied load.

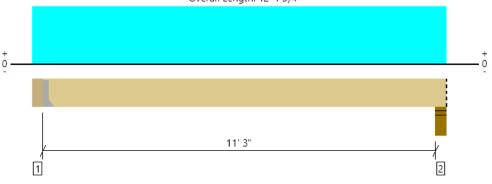
			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	1 1/2" to 26' 3 1/2"	N/A	29.5			
1 - Uniform (PSF)	0 to 26' 5" (Front)	2'	15.0	40.0	-	Floor Load
2 - Uniform (PLF)	0 to 26' 5" (Top)	N/A	100.0	-	-	Wall Load Above
3 - Uniform (PSF)	0 to 26' 5" (Front)	2'	12.0	-	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weverhaeuser.com/woodproducts/document-librarv.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Harrison Kliegl	
L120 Engineering	
(425) 636-3313	
hkliegl@I120engineering.com	



11/10/2022 4:12:44 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Forest Creek Lot 2 Page 33 / 47

2nd Floor, 2B-9 1 piece(s) 3 1/2" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1687 @ 5 1/4"	3281 (1.50")	Passed (51%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	1242 @ 1' 11 1/4"	14007	Passed (9%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-Ibs)	4799 @ 6' 1 1/2"	50215	Passed (10%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.013 @ 6' 1 1/2"	0.284	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.038 @ 6' 1 1/2"	0.569	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on 18" PSL beam	5.25"	Hanger ¹	1.50"	1165	245	613	1809	See note 1
2 - Stud wall - HF	5.50"	5.50"	1.50"	1154	241	602	1786	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	11' 9" o/c					
Bottom Edge (Lu)	11' 9" o/c					
•Maximum allowable bracing intervals based on applied load.						

Connector: Simpson Strong-Tie

		Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger IUS3.56/14 2.00" N/A 14-10d 2-10dx1.5	Nount Hanger	IUS3.56/14	2.00"	N/A	14-10d	2-10dx1.5	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

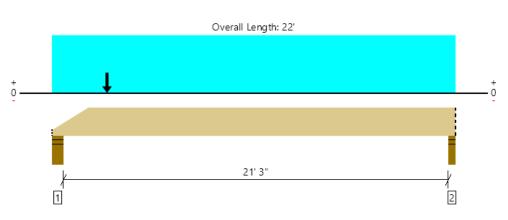
			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	5 1/4" to 12' 1 3/4"	N/A	19.7			
1 - Uniform (PSF)	0 to 12' 1 3/4" (Front)	1'	12.0	40.0	-	Floor Load
2 - Uniform (PSF)	0 to 12' 1 3/4" (Back)	2'	15.0	-	25.0	Low Roof Load
3 - Uniform (PLF)	0 to 12' 1 3/4" (Top)	N/A	100.0	-	-	Wall Load Above
4 - Uniform (PSF)	0 to 12' 1 3/4" (Top)	2'	15.0	-	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Harrison Klieg L120 Engineering (425) 636-3313 hkliegl@l120engineering.com



11/10/2022 4:12:44 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Forest Creek Lot 2 Page 34 / 47

2nd Floor, 2B-10 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6218 @ 21' 10"	7442 (3.50")	Passed (84%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	7116 @ 1' 4 7/8"	14432	Passed (49%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	33891 @ 10' 9 3/16"	65497	Passed (52%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.356 @ 11' 3/4"	0.538	Passed (L/725)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.544 @ 10' 11 15/16"	1.075	Passed (L/474)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Sup									
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories						
1 - Stud wall - HF	5.50"	5.50"	3.47"	2944	4426	1091	7370	Blocking						
2 - Stud wall - HF	3.50"	3.50"	2.92"	2039	4179	622	6218	Blocking						
Blocking Panels are assumed to carry no load	s applied dire	rtly above the	m and the ful	l load is annli	Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.									

ed directly above them and the full load is

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	22' o/c	
Bottom Edge (Lu)	22' o/c	

•Maximum allowable bracing intervals based on applied load.

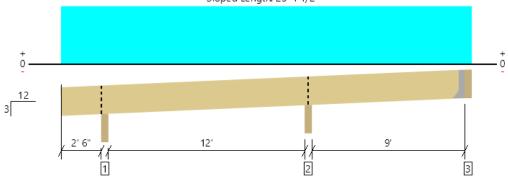
			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 22'	N/A	29.5			
1 - Uniform (PSF)	0 to 22' (Front)	9' 6"	12.0	40.0	-	Floor Load
2 - Uniform (PSF)	0 to 22' (Back)	2'	15.0	-	25.0	Low Roof Load
3 - Point (lb)	3' (Front)	N/A	1165	245	613	Linked from: 2B-9, Support 1

						Shear (lbs)		
Tapered End	Heel Height	Cut Length	Cut Slope	Location	Actual	Allowed	Result	Comments
Left End	10"	2' 8"	3/12	1' 4 7/8"	7116	14432	Passed (49%)	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Job Notes Harrison Klieg L120 Engineering (425) 636-3313 hkliegl@I120engineering.com

11/10/2022 4:12:44 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Forest Creek Lot 2 Page 35 / 47

Low Roof, LRJ-1 1 piece(s) 2 x 8 DF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	718 @ 14' 11 1/4"	3382 (3.50")	Passed (21%)		1.0 D + 1.0 S (Adj Spans)
Shear (lbs)	346 @ 14' 2 7/16"	1501	Passed (23%)	1.15	1.0 D + 1.0 S (Adj Spans)
Moment (Ft-lbs)	-787 @ 14' 11 1/4"	1564	Passed (50%)	1.15	1.0 D + 1.0 S (Adj Spans)
Live Load Defl. (in)	0.131 @ 8' 4 1/8"	0.633	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.196 @ 8' 3 13/16"	0.845	Passed (L/775)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Member Pitch : 3/12

Member Length : 24' 11 11/16"

• Deflection criteria: LL (L/240) and TL (L/180).

• Overhang deflection criteria: LL (2L/240) and TL (2L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Beveled Plate - DF	3.50"	3.50"	1.50"	163	270	433	Blocking
2 - Beveled Plate - DF	3.50"	3.50"	1.50"	271	447	718	Blocking
3 - Hanger on 7 1/4" DF ledgerOnMasonry	3.50"	Hanger ¹	1.50"	68	130	198	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	16' 9" o/c						
Bottom Edge (Lu)	12' 11" o/c						
Maximum alloughle brasing intervals based on applied load							

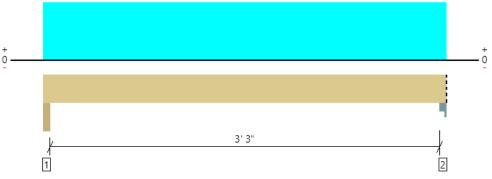
•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-1	īie					
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
3 - Face Mount Hanger	LRU26Z	1.94"	N/A	4-10dx1.5	5-10d	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 24' 4 1/2"	16"	15.0	25.0	Roof Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

Low Roof, LRB-1 1 piece(s) 4 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1044 @ 2"	7656 (3.50")	Passed (14%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	556 @ 10 3/4"	3502	Passed (16%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	834 @ 1' 11"	3438	Passed (24%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.006 @ 1' 11"	0.175	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.010 @ 1' 11"	0.233	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

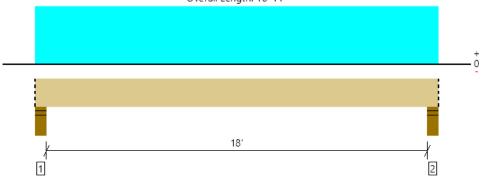
	Bearing Length			Loads	to Supports					
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories			
1 - Trimmer - HF	3.50"	3.50"	1.50"	402	643	1044	None			
2 - Column Cap - steel	3.50"	3.50"	1.50"	402	643	1044	Blocking			
Blocking Panels are assumed to carry no load	Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.									

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 10" o/c	
Bottom Edge (Lu)	3' 10" o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 10"	N/A	6.4		
1 - Uniform (PLF)	0 to 3' 10" (Top)	N/A	203.3	335.3	Linked from: LRJ-1, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	
Member Reaction (lbs) 833 @ 4"		12251 (5.50") Passed (7%)			1.0 D + 1.0 S (All Spans)	
Shear (lbs)	715 @ 1' 4"	11733	Passed (6%)	1.15	1.0 D + 1.0 S (All Spans)	
Pos Moment (Ft-lbs)	3665 @ 9' 5 1/2"	23244	Passed (16%)	1.15	1.0 D + 1.0 S (All Spans)	
Live Load Defl. (in)	0.131 @ 9' 5 1/2"	0.456	Passed (L/999+)		1.0 D + 1.0 S (All Spans)	
Total Load Defl. (in)	0.230 @ 9' 5 1/2"	0.913	Passed (L/952)		1.0 D + 1.0 S (All Spans)	

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

· Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

0

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 18' 3".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - HF	5.50"	5.50"	1.50"	360	473	833	Blocking
2 - Stud wall - HF	5.50"	5.50"	1.50"	360	473	833	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	18' 11" o/c						
Bottom Edge (Lu)	18' 11" o/c						
Maximum allowable bracing intervals based on applied load							

um allowable bracing intervals based on applied load.

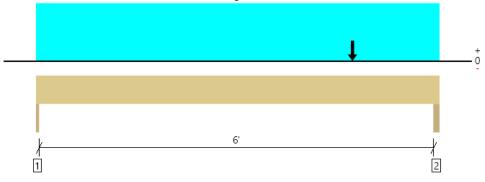
			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 18' 11"	N/A	14.0		
1 - Uniform (PSF)	0 to 18' 11" (Top)	2'	12.0	25.0	Low Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Jop I
Harrison Kliegl	
L120 Engineering	
(425) 636-3313	
hklieal@l120enaineerina.com	



11/10/2022 4:12:44 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Forest Creek Lot 2 Page 38 / 47

1st Floor, 1H-1 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Decian Deculto	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7300 @ 6' 3"	10725 (3.00")	Passed (68%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	6868 @ 5' 4 1/2"	8745	Passed (79%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	8720 @ 5'	14774	Passed (59%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.052 @ 3' 4 9/16"	0.208	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.087 @ 3' 4 5/8"	0.313	Passed (L/865)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 0.5% decrease in the moment capacity has been added to account for lateral stability.

0

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 6' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	1119	1706	218	2824	None
2 - Trimmer - HF	3.00"	3.00"	2.04"	2906	4394	873	7300	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 4 1/2"	N/A	12.0			
1 - Uniform (PSF)	0 to 6' 4 1/2"	10' 6"	15.0	25.0	-	Low Roof Load
2 - Point (Ib)	5'	N/A	2944	4426	1091	Linked from: 2B-10, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	
Harrison Kliegl	
L120 Engineering	l
(425) 636-3313	l
hklieal@l120enaineerina.com	L

1st Floor, 1H-2 1 piece(s) 6 x 10 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2226 @ 0	5156 (1.50")	Passed (43%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1785 @ 11"	5922	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	5147 @ 4' 7 1/2"	5998	Passed (86%)	1.00	1.0 D + 1.0 L (All Spans)
Vert Live Load Defl. (in)	0.116 @ 4' 7 1/2"	0.308	Passed (L/956)		1.0 D + 1.0 L (All Spans)
Vert Total Load Defl. (in)	0.155 @ 4' 7 1/2"	0.463	Passed (L/715)		1.0 D + 1.0 L (All Spans)
Lat Member Reaction (lbs)	207 @ 9' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	181 @ 7"	9475	Passed (2%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	478 @ mid-span	5588	Passed (9%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.030 @ mid-span	0.925	Passed (L/999+)		1.0 D + 0.6 W
Bi-Axial Bending	0.50	1.00	Passed (50%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 Lr

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Lateral deflection criteria: Wind (L/120)

• A 0.6% decrease in the moment capacity has been added to account for lateral stability.

• Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.

• Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	561	1665	2226	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	561	1665	2226	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

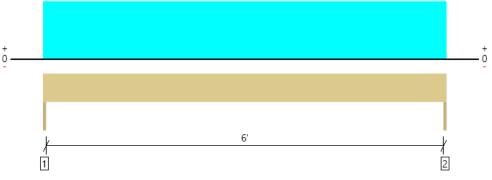
Lateral Connections

Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing
Left	2X	Hem Fir	Nails	8d (0.113" x 2 1/2") (Toe)	3	
Right	2X	Hem Fir	Nails	8d (0.113" x 2 1/2") (Toe)	3	

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 9' 3"	N/A	13.2		
1 - Uniform (PSF)	0 to 9' 3"	9'	12.0	40.0	Floor Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	3'	24.9	

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area


determined using full member span and trib. width. • IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com		Weyerhaeuser

1st Floor, 1H-3 2 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	251 @ 0	2813 (1.50")	Passed (9%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	192 @ 8 3/4"	3002	Passed (6%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	392 @ 3' 1 1/2"	2592	Passed (15%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.011 @ 3' 1 1/2"	0.208	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.018 @ 3' 1 1/2"	0.313	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 4.7% decrease in the moment capacity has been added to account for lateral stability.

Applicable calculations are based on NDS.

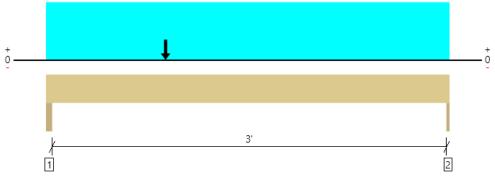
	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	95	156	251	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	95	156	251	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu) End Bearing Points		
Bottom Edge (Lu)	End Bearing Points	

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	5.5		
1 - Uniform (PSF)	0 to 6' 3"	2'	12.4	25.0	Low Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

1st Floor, 1H-4 3 piece(s) 2 x 10 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2770 @ 3' 4 1/2"	4219 (1.50")	Passed (66%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3270 @ 1' 1/4"	4995	Passed (65%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3396 @ 1'	5219	Passed (65%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.007 @ 1' 8 9/16"	0.108	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.013 @ 1' 8 3/8"	0.162	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 1.4% decrease in the moment capacity has been added to account for lateral stability.

Applicable calculations are based on NDS.

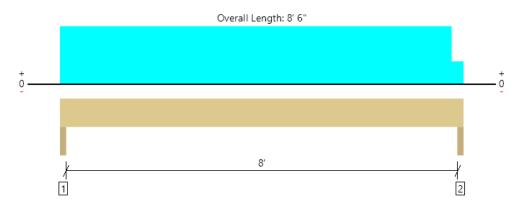
	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.61"	2238	2277	482	4516	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1088	1682	178	2770	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 4 1/2"	N/A	10.6			
1 - Uniform (PSF)	0 to 3' 4 1/2"	21' 6"	12.0	40.0	-	Floor Load
2 - Point (lb)	1'	N/A	2420	1057	660	Linked from: 2B-8, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com	

1st Floor, 1H-5 1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5734 @ 1 1/2"	10725 (3.00")	Passed (53%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	4218 @ 7' 4 1/2"	11733	Passed (36%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Pos Moment (Ft-lbs)	11478 @ 4' 3"	23024	Passed (50%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.082 @ 4' 3"	0.275	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.147 @ 4' 3"	0.412	Passed (L/672)		1.0 D + 0.75 L + 0.75 S (All Spans)

system : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 0.9% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 8' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.60"	2550	1700	2546	5734	None
2 - Trimmer - HF	3.00"	3.00"	1.55"	2459	1700	2398	5532	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

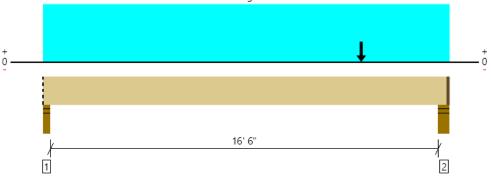
			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 6"	N/A	14.0			
1 - Uniform (PSF)	0 to 8' 6"	10'	12.0	40.0	-	Floor Load
2 - Uniform (PLF)	0 to 8' 6"	N/A	100.0	-	-	Wall Load Above
3 - Uniform (PLF)	0 to 8' 3"	N/A	366.0	-	599.3	Linked from: RJ-2, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes


 Harrison Kliegl
 120 Engineering

 (425) 636-3313
 hkliegl@i120engineering.com

Basement, BB-1 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5290 @ 16' 11"	8505 (4.00")	Passed (62%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	5159 @ 15' 3 1/2"	21011	Passed (25%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	17605 @ 13' 6"	75322	Passed (23%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.066 @ 9' 5 1/8"	0.419	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.142 @ 9' 4 7/8"	0.837	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	982	722	381	1809	Blocking
2 - Stud wall - HF	5.50"	4.00"	2.49"	2806	1833	1486	5295	1 1/2" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	17' 2" o/c	
Bottom Edge (Lu)	17' 2" o/c	

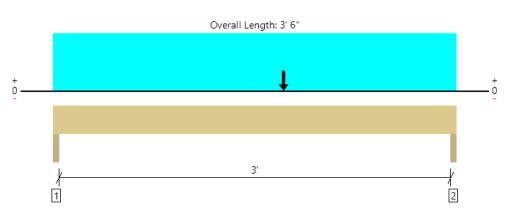
•Maximum allowable bracing intervals based on applied load.

Ventional Londo		Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	0
Vertical Loads	Location (Side)	Thouany Width	(0.90)	(1.00)	(1.13)	Comments
0 - Self Weight (PLF)	0 to 17' 1 1/2"	N/A	29.5			
1 - Uniform (PSF)	0 to 17' 3" (Front)	1'	12.0	40.0	-	Floor Load
2 - Point (lb)	13' 6" (Top)	N/A	1039	478	299	Linked from: 2B-3, Support 2
3 - Point (lb)	13' 6" (Top)	N/A	2036	1387	1568	Linked from: 2B-5, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl	
L120 Engineering	
(425) 636-3313	
hkliegl@I120engineering.com	



Basement, BH-1

1 piece(s) 3 1/2" x 7 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4685 @ 3' 4 1/2"	6825 (3.00")	Passed (69%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3905 @ 2' 7 1/2"	4638	Passed (84%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	5446 @ 2'	6525	Passed (83%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.028 @ 1' 9 3/16"	0.108	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.039 @ 1' 9 3/16"	0.162	Passed (L/991)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 0.6% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 3' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.69"	1060	2791	3851	None
2 - Trimmer - HF	3.00"	3.00"	2.06"	1312	3373	4685	None

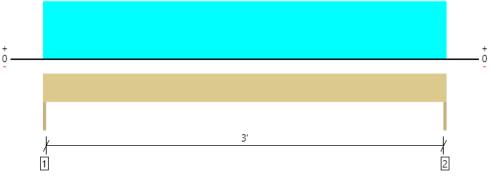
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 6"	N/A	6.4		
1 - Uniform (PSF)	0 to 3' 6"	17'	12.0	40.0	Floor Load
2 - Point (lb)	2'	N/A	1636	3783	Linked from: 2B-1, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl	
L120 Engineering	
(425) 636-3313	
hkliegl@1120engineering.com	



Basement, BH-2 2 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	981@0	2813 (1.50")	Passed (35%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	541 @ 8 3/4"	2610	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	797 @ 1' 7 1/2"	2327	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.008 @ 1' 7 1/2"	0.108	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.010 @ 1' 7 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 1.6% decrease in the moment capacity has been added to account for lateral stability.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	233	748	981	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	233	748	981	None

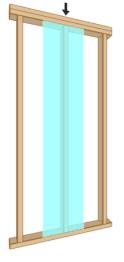
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 3"	N/A	5.5		
1 - Uniform (PSF)	0 to 3' 3"	11' 6"	12.0	40.0	Floor Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com	


PASSED

1st Floor, Balloon Framed Wall Check 1 piece(s) 2 x 6 HF No.2 @ 12" OC

Wall Height: 20'

Member Height: 19' 7 1/2"

O. C. Spacing: 12.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	43	50	Passed (86%)		
Compression (lbs)	440	1690	Passed (26%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	440	4177	Passed (11%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	132			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	126	1320	Passed (10%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	649 @ mid-span	1264	Passed (51%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	1.16 @ mid-span	1.96	Passed (L/202)		1.0 D + 0.6 W
Bending/Compression	0.58	1	Passed (58%)	1.60	1.0 D + 0.6 W

Lateral deflection criteria: Wind (L/120)

· Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

• A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре		Material	System : Wall
Тор	Dbl 2X	(Hem Fir	Member Type : Stud Building Code : IBC 2018
Base	2X		Hem Fir	Design Methodology : ASD
Max Unbraced Length	1		Comments	

Drawing is Conceptual

Lateral Connections								
Supports	Connector	Type/Model	Quantity	Connector Nailing				
Тор	Nails 8d (0.113" x 2 1/2") (Toe)		2	N/A				
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

Vertical Load	Spacing	Dead (0.90)	Snow (1.15)	Comments
1 - Point (lb)	N/A	165	275	Roof Load DL= 15psf * 11 ft SL= 25psf * 11 ft

			Wind	
Lateral Load	Location	Spacing	(1.60)	Comments
1 - Uniform (PSF)	Full Length	12.00"	22.5	

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

1'

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

LATERAL CALCULATIONS

SHEAR-WALL REFERENCE PER PLAN

Project Number:	Plan Name:	Sheet Number:
S22201	Forest Creek Estates Lot 2	DC
Engineer:	Specifics:	Date:
НК	Design Criteria	11/10/2022

Gravity Criteria:

ROOF SYSTEM								
Live Load: Snow	25.0	psf						
Dead Load:								
Composite Roofing	2.0	psf						
19/32" Plywood Sheathing	2.5	psf						
Trusses at 24" o.c.	3.0	psf						
Insulation	1.8	psf						
(2) Layers 5/8" GWB	4.4	psf						
Misc/Mech	1.3	psf						
Total	15.0	psf						

EXTERIOR WALL S	YSTEN	A
2x6 at 16" o.c.	1.7	psf
Insulation	1.0	psf
1/2" Plywood Sheathing	1.5	psf
(2) layers 5/8" GWB	4.4	psf
Misc	3.4	psf
Total	12.0	psf

FLOOR SY	STEM		
Live Load: Residential	40.0	psf	
Kesidendai	40.0	psi	
Dead Load:			
Flooring	3.0	psf	
3/4" T & G Plywood	2.5	psf	
Floor Joists at 16" o.c.	2.5	psf	
Insulation	0.5	psf	
(1) Layers 5/8" GWB	2.2	psf	
Miscellaneous	1.3	psf	
Total	12.0	psf	

Code: IBC 2018

INTERIOR WAL	L SYST	`EM	
2x4 at 16" o.c.	1.1	psf	
Insulation	0.5	psf	
(2) Layers 5/8" GWB	4.4	psf	
Misc	2.0	psf	
Total	8.0	psf	

SEISMIC PARAMETERS:

Code Reference: ASCE 7-16

6.5 Bearing Wall System, Wood Structural Panel Walls

R = Mapped Spectral Acceleration, Ss = 1.45 Mapped Spectral Acceleration, S1 = 0.503

Soil Site Class = D

WIND PARAMETERS:

Code Reference: ASCE 7-16 Basic Wind Speed (3 second Gust) = 100 mph Exposure : B Kzt = **1.00**

SOIL PARAMETERS:

Soil Bearing Pressure = 1,500 psf competent native soil or structural fill 1/3 increase for short-term wind or seismic loading is acceptable Frost Depth = in 18

35

pcf

Lateral Wall Pressures:

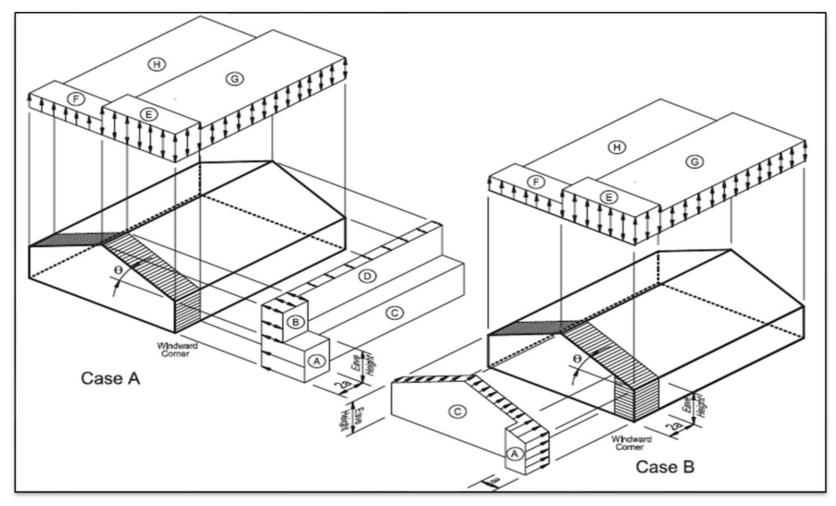
Unrestrained Active Pressure =

Restrained Active Pressure =

Cantilevered walls pcf

Plate Wall Design/Tank Walls pcf

- **50** Passive Pressure = 250
- Soil Friction Coeff. = 0.35


Project Number:	Plan:	Sheet Number:
S22201	Forest Creek Estates Lot 2	L1
Engineer:	Specifics:	Date
НК	WIND FORCES	11/10/2022

IBC 2018 Section 1609 \rightarrow ASCE 7-16 Section 28.5 - Simplified Procedure \rightarrow Main Wind-Force Resisting System

LOAD CRITERIA:			WIND LOAD SUMMARY:
Basic Wind Speed, $V_s =$	100 mph	(ASCE 7-16, Section 26.5)	Front / Back Direction
Exposure =	В	(ASCE 7-16, Section 26.7)	Roof 6.84 k
BUILDING GEOMETRY:			2nd Floor 8.61 k
Roof Slope =	3.00 :12	= 14.04 degrees	1st Floor 3.71 k
Loads From Front/Back - Width (ft)=	71.00 ft	Roof: Gable	
Loads From Side - Width (ft) =	65.00 ft	Roof: Gable	Basement (Base Shear) 19.16 k
Average Eave Height =	25.00 ft		
Mean Roof Ht., h =	30.00 ft	(ASCE 7-16, Figure 27.5-2)	
Edge Strip Width, a =	6.5 ft	(ASCE 7-16, Figure 28.5-1)	Side / Side Direction
End Zone Width, 2a =	13.00 ft	(ASCE 7-16, Figure 28.5-1)	Roof 6.23 k
			2nd Floor 8.11 k
DESIGN:			-
Topographic Factor, Kzt =	1.00	(ASCE 7-16, Section 26.8)	1st Floor 1.48 k
Adjustment Factor, $\lambda =$	1.05	(ASCE 7-16, Figure 28.5-1)	
			Basement (Base Shear) 15.82 k
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SIMPLIFIED DESIGN WIND PRESSURE, P _{S30} (psf)												
(Exposure B at $h = 30 ft$ .)												
Basic Wind	Roof		ZONES*									
Speed, Vs	Angle	Load Case		Horizontal PressureVertical PressureOverhang								
(mph)	(Degrees)		Α	В	С	D	Ε	F	G	Н	E _{OH}	G _{OH}
100	14.04	А	19.90	-6.60	13.30	-3.80	-19.10	-12.40	-13.30	-9.50	-26.70	-20.90

* Values Interpolated from Figure 28.5-1 ASCE 7 - 16



Project Number:	Plan:	Sheet Number:
S22201	Forest Creek Estates Lot 2	L1
Engineer:	Specifics:	Date
НК	WIND FORCES	11/10/2022

IBC 2018 Section 1609 → ASCE 7-16 Section 28.5 - Simplified Procedure → Main Wind-Force Resisting System

H	$p_{s=} \lambda^* K_{z}$	(psf)	<b>MIN. LO</b> Per ASCE 7	·• ·	
End	zone	Inte	rior zone	Deef	XX7 - 11
A (Wall)	B (Roof)	C (Wall)	D (Roof)	Roof	Wall
20.90	-6.93	13.97	-3.99	8.0	16.0

Full Impact at Basement?

**YES** (No = 1/4 Impact)

	ASD WIND I	FORCES	: FRON	T / BACK	K LOADI	NG DIREC	CTION			
		Width	Height		Enc	l Zone	Inte	erior zone	Force	Min Force
	Location	vv latn	Height	Plane	Length	Pressure (W)	Length	Pressure (W)	0.6 ω*W	0.6 ω*W
		(ft)	(ft)		(ft)	(psf)	(ft)	(psf)	(kips)	(kips)
Γ.	"Height" of Roof to Plate (see note)	72.0	3.00	(roof)	13.0	20.90	59.0	13.97	2.56	1.35
ROOF	Plate to Mid 2nd LVL	72.0	5.00	(wall)	13.0	20.90	59.0	13.97	4.27	4.49
<u> </u>								$\Sigma =$	6.84	5.84
OR	Mid 2nd LVL to Floor	72.0	5.00	(wall)	13.0	20.90	59.0	13.97	4.27	4.49
FLOOR	"Height" Low-Roof to Plate (see note)	0.0	0.00	(roof)	13.0	20.90	-13.0	13.97	0.00	0.00
	Floor to Mid 1st LVL	66.0	5.00	(wall)	13.0	20.90	53.0	13.97	3.95	4.12
2nd								$\Sigma =$	8.22	8.61
) K	Mid 1st LVL to Floor	53.0	5.00	(wall)	13.0	20.90	40.0	13.97	3.24	3.31
FLOOR	"Height" Low-Roof to Plate (see note)	0.0	0.00	(roof)	13.0	20.90	-13.0	13.97	0.00	0.00
	Floor to Mid Basement LVL	66.0	5.00	(wall)	13.0	20.90	53.0	13.97	3.95	4.12
1st								$\Sigma =$	3.59	3.71
						Tota	l Wind Ba	se Shear (kips)	18.65	18.16

Full Impact at Basement?

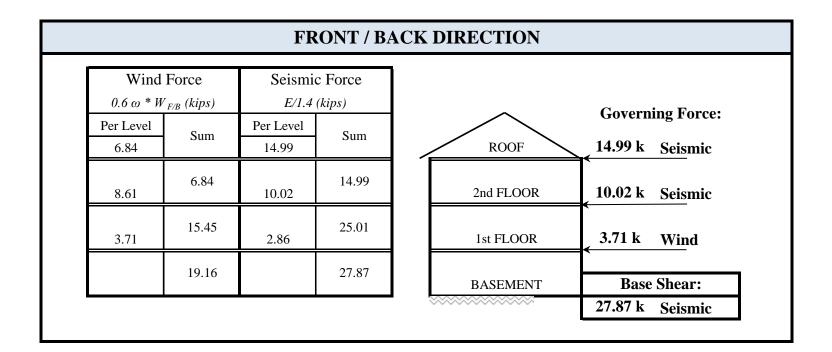
NO (No = 1/4 Impact)

	ASD WINI	) FORCI	ES: SID	E / SIDE I	LOADIN	G DIRECT	ION			
		Width	Haight		Enc	l Zone	Inte	erior zone	Force	Min Force
	Location	w laui	Height	Plane	Length	Pressure (W)	Length	Pressure (W)	0.6 ω*W	0.6 ω*W
		(ft)	(ft)		(ft)	(psf)	(ft)	(psf)	kips	kips
Ŀ	"Height" of Roof to Plate (see note)	65.0	3.00	(roof)	13.0	20.90	52.0	13.97	2.33	1.22
ROOF	Plate to Mid 2nd LVL	65.0	5.00	(wall)	13.0	20.90	52.0	13.97	3.89	4.06
¥								$\Sigma =$	6.23	5.27
OR	Mid 2nd LVL to Floor	65.0	5.00	(wall)	13.0	20.90	52.0	13.97	3.89	4.06
FLOOR	"Height" Low-Roof to Plate (see note)	0.0	0.00	(roof)	13.0	20.90	-13.0	13.97	0.00	0.00
	Floor to Mid 1st LVL	65.0	5.00	(wall)	13.0	20.90	52.0	13.97	3.89	4.06
2nd								$\Sigma =$	7.78	8.11
ЭR	Mid 1st LVL to Floor	65.0	5.00	(wall)	13.0	20.90	52.0	13.97	3.89	4.06
FLOOR	"Height" Low-Roof to Plate (see note)	0.0	0.00	(roof)	13.0	20.90	-13.0	13.97	0.00	0.00
	Floor to Mid Basement LVL	30.0	5.00	(wall)	13.0	20.90	17.0	13.97	1.99	1.87
1st								$\Sigma =$	1.47	1.48
						T (	1W. 1D	so Shoor (king)	15 / 9	1/ 97

Total Wind Base Shear (kips)15.4814.87

Project Number:	Plan Name:	Sheet Number:
S22201	Forest Creek Estates Lot 2	L2
Engineer:	Specifics:	Date:
НК	SEISMIC WEIGHTS	11/10/2022

Unit Weights (psf)			Seismic Weights include: (REF §12.7)
Roof:	15	psf	25% of storage Live loads
Floor:	12	psf	Actual partition weight or 10 psf min if applicable
Exterior Wall:	12	psf	Operating weight of permenant equipment
Interior Wall:	8	psf	20% of uniform design snow loads for areas where $Pf > 30 psf$


LEVEL	ITEM	AREA / LENGTH	HEIGHT (ft)	UNIT WEIGHT (psf)		Item Total Weight. (lbs)	Sub- Total (kips)	Average Pressure (psf)
			()	( <b>r</b> )		()	( <b>F</b> ~)	(1)
<b>ROOF:</b>								
	Roof	3,855	1.05	15	=	60,854		
	Ext. Wall Below	285	5.00	12	=	17,100		
	Corridor Wall Below	125	5.00	8	=	5,000		
						-	83	22
2nd FLO	OR:							
	Floor	2,670	1.00	12	=	32,040		
	Low Roof	730	1.05	15	=	11,524		
	Ext. Wall Above	285	5.00	12	=	17,100		
	Corridor Wall Above	125	5.00	8	=	5,000		
	Ext. Wall Below	285	4.50	12	=	15,390		
	Corridor Wall Below	100	4.50	8	=	3,600		
						-	85	25
1st FLOC	DR:							
	Floor	1,930	1.00	12	=	23,160		
	Low Roof	0	1.05	15	=	0		
	Ext. Wall Above	285	4.50	12	=	15,390		
	Corridor Wall Above	100	4.50	8	=	3,600		
	Ext. Wall Below	115	4.50	12	=	6,210		
	Corridor Wall Below	75	4.50	8	=	2,700		
						_	51	26
BASEME								
	Ext. Wall Above	115	4.50	12	=	6,210		
	Corridor Wall Above	75	4.50	8	=	2,700		
						-	9	

## STRUCTURE WEIGHT FOR SEISMIC BASE SHEAR: 219 kips

TOTAL WEIGHT OF STRUCTURE: 228 kips (Includes Basement Dead Load)

Project Nu			Plan Name:	_	•			Sheet Number:			
Fnginger	<b>S2220</b>		Fo Specifics:	rest Cree	ek Esta	tes Lot 2	2	L3 Date:			
Engineer:	НК		specifics:	SEISM	IC FOR	RCES		Date: 11/10/2022			
Equivela		e Analysis per II	BC 2018 1613.1				ec 12.8	, , ,			
Data	generated by:	Seismic Design	Values for Bui	ldings '	'Java Gr	ound Motio	on Paramete	r Calculation''			
				<b>S</b> ₁ =	0.503		Maps				
				$S_1 =$ $S_{DS} =$	1.16		-	11 4 2)			
				$S_{DS} =$ $S_{D1} =$	1.16 0.4024		(ASCE 7 EQ				
		c	niamio Importor		0.4024		(ASCE 7 EQ				
			eismic Importar Seismic Design		1.00 D		(ASCE 7 Tabl (ASCE 7 Tabl	le 11.5-1) le 11.6-1 & 11.6.2)			
			e Modification	0.	6.5		(ASCE 7 Tabl				
	Seis	smic Force-Resis			4.13 - ligł	nt framed wa	ulls				
			Building l	Height, h _n =	30.0	ft					
		Buildin	ng Period Coeff	Ficient, $C_T =$	0.020		(ASCE 7 Tabl	le 12.82)			
		Approx	. Fundamental	Period, $T_a =$	0.256	$(C_{T^*}(h_n^{0.75}))$	(ASCE 7 EQ	12.87)			
		Approx	. Fundamental I	Period, $T_L =$	6.0	sec	(ASCE 7 11.4				
Seismic l	Response Coe			C –	o :-						
		$C_{\rm s} = S_{\rm DS}/({\rm R}/{\rm I})$		$C_s =$	0.178		(ASCE 7 EQ	12.82)			
Seismic l	Response Coe	efficient, Maxim	um								
		$C_{s, MAX} = S_{D1}/(T$		$C_{s, MAX} =$	0.241	$T \leq T_L$	(ASCE 7 EQ	12.83)			
		$C_{s, MAX} = S_{D1} T_{I}$	$/(T^2 * R/I)$	$C_{s, MAX} =$	NA	$T > T_L$	(ASCE 7 EQ	12.84)			
Seismic l	-	efficient, Minim	um								
		$C_{s, MIN} = 0.01$		$C_{s, MIN} =$	0.010		(ASCE 7 EQ	12.85)			
		$C_{s, MIN} = 0.5 S_1$	′ (R/I)	$C_{s, MIN} =$	NA	if S1 > 0.6	(ASCE 7 EQ	12.86)			
				$C_s =$	0.178						
				d Load W =	219	kips					
			·	V = Cs W =	39.0	kips	(ASCE 7 EQ				
				$Q_E = V =$	39.0	kips	(ASCE 7 EQ				
				$\rho = E_{\rm H} = \rho Q_{\rm E}$	1.0 39.0	kips	(ASCE 7 12.3 (ASCE 7 EQ				
			Ev =	$= .2 S_{\rm DS} D =$	0.23	x D kips		12.1.3)			
		Factor for Alter	nate Basic Load	l conbination		-					
				$E_{\rm H}/1.4 =$	27.9	kips	IBC 2018 160	)5.3.2			
				k =	1		(ASCE 7 12.8	3.3)			
		VERT	ICAL DISTRI	BUTION (P	er ASCE	7 - 12.8.3)					
		Story	Total	Story		Vert Dist	Story	Factored Story			
Floor	Area	Height	Height h	Weight	w _x h _x ^κ	Factor	Force	Force (ASD) Fx $\rho/1.4 = E_H/1.4$			
	$(\mathrm{ft}^2)$	H (ft)	h _x (ft)	$W_x$		Cvx	Fx (kins)				
Roof	3,855	(ft) 10.00	(ft) 29.00	(kips) 83	(k-ft) 2,406	0.54	(kips) 21.0	(kips) 15.0			
2nd	3,833 2,670	10.00	19.00	85	2,400 1,608	0.34	14.0	10.0			
1st	1,930	9.00	9.00	51	460	0.10	4.0	2.9			
				Sum =	4,474	1.000	39.0	27.9			
				Suiii =	4,4/4	1.000	39.0	41.9			

Project Number:	Plan Name:	Sheet Number:
S22201	Forest Creek Estates Lot 2	L4
Engineer:	Specifics:	Date:
НК	DESIGN LOADS	11/10/2022

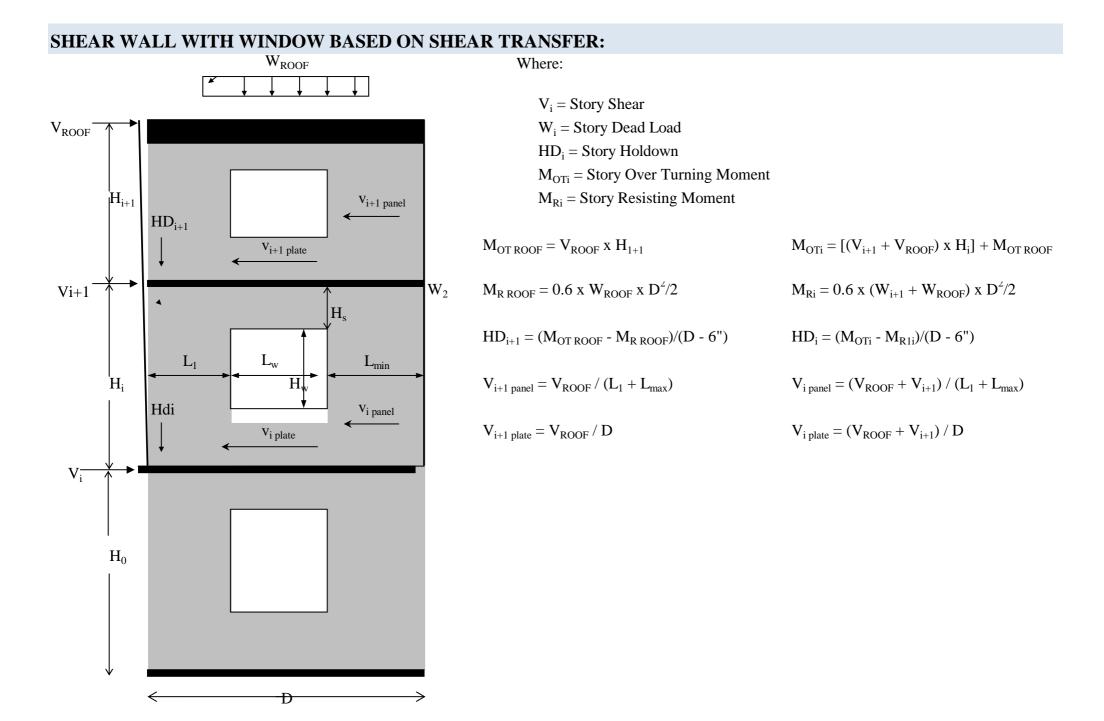


Wind		Seismic			
0.6 w * W	V _S (kips)	E/1.4 (	(kips)	$\frown$	<b>Governing Force:</b>
Per Level	Sum	Per Level	Sum		C
6.23		14.99		ROOF	14.99 k Seismic
8.11	6.23	10.02	14.99	2nd FLOOR	10.02 k Seismic
1.48	14.34	2.86	25.01	1st FLOOR	2.86 k Seismic
	15.82		27.87	BASEMENT	Base Shear:

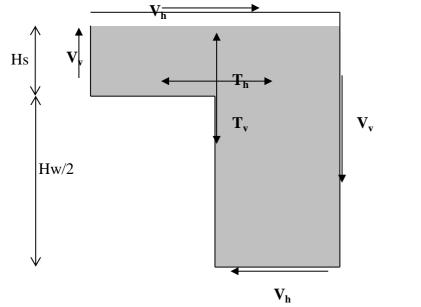
· · N 1							* All walls designed with Force-Transfer should meet a minimum height to width ratio of 2:1 at Pier (SDPWS 2018, Table 4.3.4)																					
ject Number:		Plan Name:						-																				
S22201		C :C	FOr	rest creek i	Estates Lot 2		-	L5			•		or walls w/o openings	(increased shear								pdate Formula a	-	-				
neer:		Specifics:	CL		(		Date:			•	-	018, Table 4.3.4)									<b>DLUE</b> = 1	Review and upd	ale as require	d - Typical Input				
НК			Sh	ear walls (	front/back)		11/1	0/2022		* Shear panel h	height is height t	to underside or roo	of or floor framing.															
Story Walls (1	Front - I	Back Direct	tion)					Stud Species	HF							]						<u>Walls (Front -</u> Mains and window		ion)				
		Stor	ory shear(kips) :	= 14.99			Governing Forc	e (F/B Direction) =	Seismic												<u>Hola aow</u>	<u>iis anu winuov</u>	straps					
		St	tory height (ft)	= 10.00		_		r (F/B Direction) =	0.90	IBC 2018 Equa	ation 16-22																	
			anel height (ft) =		100% story shear	Shea		Wind or Seismic) =	Seismic																			
	10	otal Diaphragr	m Area (sq ft) =	= 3855.00	YES	_	10	bad balance check =	OK				Height/Width														Force at	v
Wall	Wall	Opening	Opening	Opening (max)	Plate to	Effective	Trib. Area	Percent	Effective	Story	Sum	Panel	Reduction (%)	Design Panel	Wall	Roof DL	Sum		Sum	OTM	RM	Resultant	HD	HD/Strap to	HD location	Resultant	Window	
Mark	L(ft)	Width (ft)	Height (ft)		Opening (ft)	Length (ft)	(sq ft)	Sharing (%)	Trib. Width	V(kips)	V(kips)	Shear (plf)	R = 2*L/H	Shear (plf)	Туре	Trib(ft)	DL(klf)		DL(klf)	(k-ft)	(k-ft)	HD(kips)	TYPE	DF or HF?	Edge/Interior?	HD	(Kips)	
1.0	19.00	5.00	5.00	3.00	2.00	14.00	400.00	1.00	400.00	1.56	1.56	111	1.00	111	SW6	2.00	0.14		0.14	15.6	22.4	-0.37	flr-flr	HF	Edge	No HD	0.75	
2.1	12.50	14.00	6.00	2.50	2.00	12.50	1355.00 1355.00	0.51	691.33	2.69	2.69	215	1.00	215	SW6	3.00	0.15 0.17		0.15	26.9	10.8 51.1	1.34 -0.99	flr-flr flr boom	HF HF	Edge	MST37	1.34	
2.2 3.1	26.00 17.50	14.00	6.00	2.50	2.00	12.00 17.50	800.00	0.49 1.00	663.67 800.00	2.58 3.11	2.58 3.11	215 178	1.00 1.00	215 178	SW6 SW6	4.00 5.00	0.17		0.17 0.18	25.8 31.1	25.2	0.35	flr-beam flr-beam	HF	Edge Edge	No HD No HD	$\begin{array}{c} 0.00\\ 0.00\end{array}$	]
4.1	15.33					15.33	1300.00	0.52	679.47	2.64	2.64	170	1.00	170	SW6	6.00	0.20		0.20	26.4	20.9	0.37	flr-beam	HF	Edge	No HD	0.00	
																- 00							fla haana		-			
4.2	26.00	12.00	6.00	2.50	2.00	14.00	1300.00	0.48	620.53	2.41	2.41	172	1.00	172	SW6	7.00	0.21		0.21	24.1	64.8	-1.59	flr-beam	HF	Edge	No HD	1.08	
		12.00	6.00	2.50			1300.00								SW6	7.00	0.21		0.21	24.1	64.8	-1.59	III-deam	нг	Edge	No HD	1.08	
S =	116.33			2.50	2.00 Total OSB wall length = (feet)	= 38.50	]	S =	3855.00	2.41	2.41	172 OK	1.00 Total OSB Capacity (kips)	172 14.99	SW6	7.00	0.21		0.21	24.1					Eage	No HD	1.08	
S =	116.33			2.50	Total OSB wall length =	= 38.50	]						Total OSB Capacity		SW6	7.00	0.21		0.21	24.1	1st Story	Walls (Front -	Back Directi		Eage	No HD	1.08	
S =	116.33	Back Directi	ion)		Total OSB wall length =	= 38.50	]	S =	3855.00 Seismic	14.99	14.99		Total OSB Capacity		SW6	7.00	0.21		0.21	24.1	1st Story		Back Directi		Eage	No HD	1.08	
S =	116.33	Back Directi Stor		= 10.02	Total OSB wall length =	= 38.50	]	S =	3855.00 Seismic Accu		14.99		Total OSB Capacity		SW6	7.00	0.21		0.21	24.1	1st Story	Walls (Front -	Back Directi		Eage	No HD	1.08	
S =	116.33 ront - B	Back Directi Stor Stor Stear Pa	<b>ion)</b> <b>bry shear(kips)</b> = btory height (ft) = branel height (ft) =	= <b>10.02</b> = 10.08 = 9.08	Total OSB wall length =	= 38.50	]	S =	3855.00 Seismic Accu	14.99 mulated Shear =	14.99		Total OSB Capacity		SW6	7.00	0.21		0.21	24.1	1st Story	Walls (Front -	Back Directi		Eage	No HD	1.08	
S =	116.33 ront - B	Back Directi Stor Stor Stear Pa	ion) ory shear(kips) = tory height (ft) =	= <b>10.02</b> = 10.08 = 9.08	Total OSB wall length =	= 38.50	]	S =	3855.00 Seismic Accu	14.99 mulated Shear =	14.99		Total OSB Capacity (kips)		SW6	7.00	0.21		0.21	24.1	1st Story	Walls (Front -	Back Directi		Eage	No HD		
S = ry Walls (F	116.33 ront - B	Back Directi Stor Stor Shear Pa Total Diaphra	ion) ory shear(kips) = tory height (ft) = anel height (ft) = agm width (ft) =	= 10.02 = 10.08 = 9.08 = 3400.00	Total OSB wall length = (feet)	=38.50		S = Wind or Seismic) =	3855.00 Seismic Accu load	14.99 mulated Shear = d balance check =	14.99 25.01 OK	OK	Total OSB Capacity (kips) Height/Width	14.99				Walls/DL			<u>1st Story</u> Hold dow	Walls (Front - ns and window	<u>Back Directi</u> <u>/ straps</u>	<u>on)</u>			Force at	
S =	116.33 ront - B	Back Directi Stor Stor Stear Pa	ion) ory shear(kips) = tory height (ft) = anel height (ft) = agm width (ft) = Opening	= 10.02 = 10.08 = 9.08 = 3400.00 Opening (max)	Total OSB wall length =	= 38.50	]	S =	3855.00 Seismic Accu	14.99 mulated Shear =	14.99		Total OSB Capacity (kips)		Wall	Floor DL Trib(ft)		Walls/DL Stacks?	0.21 Sum DL(klf)	OTM (k-ft)	<u>1st Story</u> <u>Hold dow</u> RM	Walls (Front -	Back Directi		HD location Edge/Interior?	No HD Resultant HD		
S = ry Walls (F Wall	116.33 <b>ront - B</b> Wall	Back Directi Stor Stor Shear Pa Total Diaphra Opening	ion) ory shear(kips) = tory height (ft) = anel height (ft) = agm width (ft) = Opening	= 10.02 = 10.08 = 9.08 = 3400.00 Opening (max)	Total OSB wall length = (feet)	= 38.50 Shea Effective	] ar panel capacity () Trib. Width	S = Wind or Seismic) = Percent	3855.00 Seismic Accu load	14.99 mulated Shear = d balance check = Story	14.99 25.01 OK Sum	OK Panel	Total OSB Capacity (kips) Height/Width Reduction (%)	14.99 Design Panel	Wall	Floor DL	Story		Sum	OTM	<u>1st Story</u> <u>Hold dow</u> RM	Walls (Front - ns and window Resultant	Back Directi <u>v straps</u> HD	<u>on)</u> HD/Strap to	HD location	Resultant	Force at Window	
S = ry Walls (F Wall Mark	116.33 <b>ront - B</b> Wall L(ft)	Back Directi Stor Stor Shear Pa Total Diaphra Opening	ion) ory shear(kips) = tory height (ft) = anel height (ft) = agm width (ft) = Opening	= 10.02 = 10.08 = 9.08 = 3400.00 Opening (max)	Total OSB wall length = (feet)	= 38.50 Shea Effective Length (ft)	Trib. Width (ft)	S = Wind or Seismic) = Percent Sharing (%)	3855.00 Seismic Accu load Effective Trib. Width	14.99 mulated Shear = d balance check = Story V(kips)	14.99 25.01 OK Sum V(kips)	OK Panel Shear (plf)	Total OSB Capacity (kips) Height/Width Reduction (%) R = 2*L/H	14.99 Design Panel Shear (plf)	Wall Type	Floor DL Trib(ft)	Story DL(klf)	Stacks?	Sum DL(klf)	OTM (k-ft)	<u>1st Story</u> <u>Hold dow</u> RM (k-ft)	Walls (Front - ns and window Resultant HD(kips)	Back Directi <u>z straps</u> HD TYPE	on) HD/Strap to DF or HF?	HD location Edge/Interior?	Resultant HD	Force at Window (Kips)	
S = ry Walls (F Wall Mark	116.33 <b>ront - B</b> Wall L(ft) 7.25	Back Directi Stor Star Shear Pa Total Diaphra Opening Width (ft)	ion) ory shear(kips) = tory height (ft) = anel height (ft) = agm width (ft) = Opening Height (ft)	= 10.02 = 10.08 = 9.08 = 3400.00 Opening (max) to Edge (ft)	Total OSB wall length = (feet) Plate to Opening (ft)	= 38.50 Shea Effective Length (ft) 7.25	Trib. Width (ft) 690.00	S = Wind or Seismic) = Percent Sharing (%) 0.46	3855.00 Seismic Accu load Effective Trib. Width 317.62	14.99 mulated Shear = d balance check = Story V(kips) 0.94	14.99 25.01 OK Sum V(kips) 1.65	OK Panel Shear (plf) 228	Total OSB Capacity (kips) Height/Width Reduction (%) R = 2*L/H 1.00	14.99 Design Panel Shear (plf)	Wall Type SW6	Floor DL Trib(ft) 2.00	Story DL(klf) 0.14	Stacks? YES	Sum DL(klf) 0.28	OTM (k-ft) 16.7	<u>Ist Story</u> <u>Hold dow</u> RM (k-ft) 3.3	Walls (Front - ns and window Resultant HD(kips) 1.98	Back Directi <u>7 straps</u> HD TYPE flr-flr	on) HD/Strap to DF or HF?	HD location Edge/Interior? Edge	Resultant HD MST37	Force at Window (Kips) 0.00	
S = ry Walls (F Wall <u>Mark</u> 1.1 1.2	116.33 <b>ront - B</b> Wall L(ft) 7.25 14.50	Back Directi Stor Star Shear Pa Total Diaphra Opening Width (ft)	ion) ory shear(kips) = tory height (ft) = anel height (ft) = agm width (ft) = Opening Height (ft)	= 10.02 = 10.08 = 9.08 = 3400.00 Opening (max) to Edge (ft)	Total OSB wall length = (feet) Plate to Opening (ft)	= 38.50 Shea Effective Length (ft) 7.25 8.50	Trib. Width (ft) 690.00 690.00	S = Wind or Seismic) = Percent Sharing (%) 0.46 0.54	3855.00 Seismic Accu load Effective Trib. Width 317.62 372.38	14.99 mulated Shear = d balance check = Story V(kips) 0.94 1.10	14.99 25.01 OK Sum V(kips) 1.65 1.94	OK Panel Shear (plf) 228 228	Total OSB Capacity (kips) Height/Width Reduction (%) R = 2*L/H 1.00 1.00	14.99Design Panel Shear (plf)228 228	Wall Type SW6 SW6	Floor DL Trib(ft) 2.00 2.00	Story DL(klf) 0.14 0.14	Stacks? YES NO	Sum DL(klf) 0.28 0.14	OTM (k-ft) 16.7	Ist Story Hold dow RM (k-ft) 3.3 13.1	Walls (Front - ns and window Resultant HD(kips) 1.98 0.46	Back Directi <u>straps</u> HD TYPE flr-flr flr-flr	on) HD/Strap to DF or HF?	HD location Edge/Interior? Edge Edge	Resultant HD MST37 No HD	Force at Window (Kips) 0.00 1.29	
S = ory Walls (F Wall Mark 1.1 1.2 2.1	116.33 <b>ront - B</b> Wall L(ft) 7.25 14.50 12.00	Back Directi Stor Star Shear Pa Total Diaphra Opening Width (ft)	ion) ory shear(kips) = tory height (ft) = anel height (ft) = agm width (ft) = Opening Height (ft)	= 10.02 = 10.08 = 9.08 = 3400.00 Opening (max) to Edge (ft)	Total OSB wall length = (feet) Plate to Opening (ft)	= 38.50 Shea Effective Length (ft) 7.25 8.50 12.00	Trib. Width (ft) 690.00 680.00	S = Wind or Seismic) = Percent Sharing (%) 0.46 0.54 0.71	3855.00 Seismic Accu load Effective Trib. Width 317.62 372.38 480.00	14.99 mulated Shear = d balance check = Story V(kips) 0.94 1.10 1.41	14.99 25.01 OK Sum V(kips) 1.65 1.94 4.10	OK Panel Shear (plf) 228 228 342	Total OSB Capacity (kips) Height/Width Reduction (%) R = 2*L/H 1.00 1.00 1.00	14.99Design Panel Shear (plf)228 228 342	Wall Type SW6 SW6 SW4	Floor DL Trib(ft) 2.00 2.00 3.00	Story DL(klf) 0.14 0.14 0.15	Stacks? YES NO YES	Sum DL(klf) 0.28 0.14 0.32	OTM (k-ft) 16.7 19.5 41.4	<u>Ist Story</u> <u>Hold dow</u> RM (k-ft) 3.3 13.1 9.9	Walls (Front - ns and window Resultant HD(kips) 1.98 0.46 2.73	Back Directi <u>v straps</u> HD TYPE flr-flr flr-flr flr-flr flr-flr	on) HD/Strap to DF or HF?	HD location Edge/Interior? Edge Edge Edge	Resultant HD MST37 No HD MST48	Force at Window (Kips) 0.00 1.29 0.00	
S = ory Walls (F Wall Mark 1.1 1.2 2.1	116.33 <b>ront - B</b> Wall L(ft) 7.25 14.50 12.00 5.00	Back Directi Stor Star Shear Pa Total Diaphra Opening Width (ft)	ion) ory shear(kips) = tory height (ft) = anel height (ft) = agm width (ft) = Opening Height (ft)	= 10.02 = 10.08 = 9.08 = 3400.00 Opening (max) to Edge (ft)	Total OSB wall length = (feet) Plate to Opening (ft)	= 38.50 Shea Effective Length (ft) 7.25 8.50 12.00 5.00	Trib. Width (ft) 690.00 680.00 680.00	S = Wind or Seismic) = Percent Sharing (%) 0.46 0.54 0.54 0.71 0.29	3855.00 Seismic Accu load Effective Trib. Width 317.62 372.38 480.00 200.00	14.99 <b>mulated Shear =</b> d balance check = <u>Story</u> <u>V(kips)</u> 0.94 1.10 1.41 0.59	14.99 25.01 OK Sum V(kips) 1.65 1.94 4.10 3.17	OK Panel Shear (plf) 228 228 342 634	Total OSB Capacity (kips) Height/Width Reduction (%) R = 2*L/H 1.00 1.00 1.00 1.00 1.00	14.99           Design Panel           Shear (plf)           228           228           342           634	Wall Type SW6 SW6 SW4 2W4	Floor DL Trib(ft) 2.00 2.00 3.00 4.00	Story DL(klf) 0.14 0.15 0.17	Stacks? YES NO YES NO	Sum DL(klf) 0.28 0.14 0.32 0.17	OTM (k-ft) 16.7 19.5 41.4 32.0	Ist Story           Hold dow           RM           (k-ft)           3.3           13.1           9.9           1.9	Walls (Front - ns and window Resultant HD(kips) 1.98 0.46 2.73 6.68	HD <u>TYPE</u> flr-flr flr-flr flr-flr flr-conc	on) HD/Strap to DF or HF?	HD location Edge/Interior? Edge Edge Edge Edge Edge	Resultant HD MST37 No HD MST48 HDU11	Force at Window (Kips) 0.00 1.29 0.00 0.00	
S = ory Walls (F <u>Wall Mark</u> 1.1 1.2 2.1	116.33 <b>ront - B</b> Wall L(ft) 7.25 14.50 12.00 5.00 12.00	Back Directi Stor Star Shear Pa Total Diaphra Opening Width (ft)	ion) ory shear(kips) = tory height (ft) = anel height (ft) = agm width (ft) = Opening Height (ft)	= 10.02 = 10.08 = 9.08 = 3400.00 Opening (max) to Edge (ft)	Total OSB wall length = (feet) Plate to Opening (ft)	= 38.50 Shea Effective Length (ft) 7.25 8.50 12.00 5.00 12.00	Trib. Width (ft) 690.00 680.00 680.00 900.00	S = Wind or Seismic) = Percent Sharing (%) 0.46 0.54 0.71 0.29 0.51	3855.00 Seismic Accu load Effective Trib. Width 317.62 372.38 480.00 200.00 459.57	14.99 mulated Shear = d balance check = Story V(kips) 0.94 1.10 1.41 0.59 1.35	14.99 25.01 OK Sum V(kips) 1.65 1.94 4.10 3.17 2.94	OK Panel Shear (plf) 228 228 342 634 245	Total OSB Capacity (kips) Height/Width Reduction (%) R = 2*L/H 1.00 1.00 1.00 1.00 1.00 1.00	14.99           Design Panel           Shear (plf)           228           228           342           634           245	Wall Type SW6 SW6 SW4 2W4 SW4	Floor DL Trib(ft) 2.00 2.00 3.00 4.00 5.00	Story DL(klf) 0.14 0.15 0.17 0.18	Stacks? YES NO YES NO NO	Sum DL(klf) 0.28 0.14 0.32 0.17 0.18	OTM (k-ft) 16.7 19.5 41.4 32.0 29.7	Ist Story           Hold dow           RM           (k-ft)           3.3           13.1           9.9           1.9           11.9	Walls (Front - ns and window Resultant HD(kips) 1.98 0.46 2.73 6.68 1.55	HD TYPE flr-flr flr-flr flr-flr flr-flr flr-conc flr-flr	on) HD/Strap to DF or HF?	HD location Edge/Interior? Edge Edge Edge Edge Edge Edge Edge	Resultant HD MST37 No HD MST48 HDU11 MST37	Force at Window (Kips) 0.00 1.29 0.00 0.00 0.00 0.00	
S = tory Walls (F <u>w Wall</u> <u>Mark</u> 1.1 1.2 2.1	116.33 ront - B Wall L(ft) 7.25 14.50 12.00 5.00 12.00 11.50	Back Directi Stor Star Shear Pa Total Diaphra Opening Width (ft)	ion) ory shear(kips) = tory height (ft) = anel height (ft) = agm width (ft) = Opening Height (ft)	= 10.02 = 10.08 = 9.08 = 3400.00 Opening (max) to Edge (ft)	Total OSB wall length = (feet) Plate to Opening (ft)	= 38.50 Shea Effective Length (ft) 7.25 8.50 12.00 5.00 12.00 11.50	Trib. Width (ft) 690.00 680.00 680.00 900.00 900.00	S = Wind or Seismic) = Percent Sharing (%) 0.46 0.54 0.71 0.29 0.51 0.49	3855.00 Seismic Accu load Effective Trib. Width 317.62 372.38 480.00 200.00 459.57 440.43	14.99 <b>mulated Shear =</b> d balance check = <u>Story</u> V(kips) 0.94 1.10 1.41 0.59 1.35 1.30	14.99 25.01 OK Sum V(kips) 1.65 1.94 4.10 3.17 2.94 2.82	OK Panel Shear (plf) 228 228 342 634 245 245	Height/Width           Reduction (%) $R = 2*L/H$ 1.00           1.00           1.00           1.00           1.00           1.00           1.00           1.00           1.00           1.00           1.00           1.00	14.99           Design Panel           Shear (plf)           228           228           342           634           245	Wall Type SW6 SW6 SW4 2W4 SW4 SW4	Floor DL Trib(ft) 2.00 2.00 3.00 4.00 5.00 6.00	Story DL(klf) 0.14 0.15 0.17 0.18	Stacks? YES NO YES NO NO NO	Sum DL(klf) 0.28 0.14 0.32 0.17 0.18 0.20	OTM (k-ft) 16.7 19.5 41.4 32.0 29.7 28.4	Ist Story           Hold dow           RM           (k-ft)           3.3           13.1           9.9           1.9           11.9           11.8	Walls (Front - ns and window Resultant HD(kips) 1.98 0.46 2.73 6.68 1.55 1.51	HD TYPE flr-flr flr-flr flr-flr flr-flr flr-conc flr-flr flr-flr flr-flr	on) HD/Strap to DF or HF?	HD location Edge/Interior? Edge Edge Edge Edge Edge Edge Edge Edge	Resultant HD MST37 No HD MST48 HDU11 MST37 MST37	Force at Window (Kips) 0.00 1.29 0.00 0.00 0.00 0.00 0.00	

**Basement Walls (Front - Back Direction)** 

			Story shear(kips) Story height (ft) Shear Panel height (ft) Total Diaphragm width (ft)	= 10.08 = 9.08						ulated Shear = balance check =		The rest of the s	story shear from abov	e has been trans	sterreu into r	Junuation								
				- 1750.00									Height/Width										Force at	Wind
Story	Wall	Wall	Opening Opening	Opening (max)	Plate to	Effective	Trib. Width	Percent	Effective	Story	Sum	Panel	Reduction (%)	Design Panel	Wall	Story	Sum	OTM	RM	Resultant	HD	Resultant	Window	Stra
	Mark	L(ft)	Width (ft) Height (ft)	to Edge (ft)	Opening (ft)	Length (ft)	(ft)	Sharing (%)	Trib. Width	V(kips)	V(kips)	Shear (plf)	R = 2*L/H	Shear (plf)	Туре	DL(klf)	DL(klf)	(k-ft)	(k-ft)	HD(kips)	TYPE	HD	(Kips)	
3	1.1	7.25				7.25	315.00	0.28	88.69	0.17	1.82	251	1.00	251	SW4	0.25	0.39	5.5	9.2	-0.55	flr-conc	No HD	0.00	No
3	1.2	18.50				18.50	315.00	0.72	226.31	0.44	2.37	128	1.00	128	CONCRE	<b>FE FOUND</b>	ATION WALL							
	2.1	9.67				9.67	475.00	1.00	475.00	0.91	5.02	519	1.00	519	SW2	0.25	0.40	45.6	17.0	3.11	flr-conc	STHD14	0.00	No
3	2.1								21125	0.66	2.4	410	1.00	412	SW3	0.25	0.43	32.7	14.9	2.16	fle como	STHD14	0.00	
3 3	2.1 3.1	8.75				8.75	600.00	0.57	344.26	0.66	3.61	412	1.00	412	3 11 3	0.25	0.75	32.1	14.9	2.10	flr-conc	51 ПD14	0.00	INO
B B B	2.1 3.1 3.2					8.75 6.50	600.00 600.00	0.57 0.43	344.26 255.74	0.66 0.49	3.01 3.31	412 510	1.00	412 510	SW3 SW2	0.25	0.45	30.1	8.5	3.59	flr-conc	HDU5	0.00	No No


Notes:

# <u>Basement Walls (Front - Back Direction)</u> <u>Hold downs and window straps</u>


Engineer:	umber: <b>\$2220</b> 2	1	Plan Name: Specifics:		st Creek Es	tates Lot 2		Sheet Number: L Date:	L6		* Maximum a	llowed height	WS 2018, Table t to width ratio 3 S 2018, Table 4	.5:1 for walls w/o open	ngs (increased she	ear						-	te Formula as re iew and update a						
C	HK		•	She	ear walls (si	ide/side)		11/10	0/2022		-	-		or roof or floor framing										<b>D·</b> ( <b>·</b> )					
and Stor	ry Walls (S	Side / Side	e Direction)						Stud Species	HF													alls (Side / Side and window str						
			Shear I	tory shear(kips) = Story height (ft) = Panel height (ft) = ragm width (ft) =	9.08 8.08	100% story shear YES		Dead load factor panel capacity (W	e (F/B Direction) = r (F/B Direction) = Wind or Seismic) = bad balance check = O	Seismic 0.90 Seismic K	IBC 2018 Eq	uation 16-22					]												
Story	Wall Mark	Wall L(ft)	Opening Width (ft)	Opening Height (ft)	Opening (max) to Edge (ft)	Plate to Opening (ft)	☐ Effective Length (ft)	Trib. Area (sq ft)	Percent Sharing (%)	Effective Trib. Width	Story V(kips)	Sum V(kips)	Panel Shear (plf)	Height/Width Reduction (%) R = 2*L/H	Design Panel Shear (plf)	Wall Type	Roof DL Trib(ft)	Story DL(klf)		Sum DL(klf)	OTM (k-ft)	RM (k-ft)	Resultant HD(kips)	HD TYPE	HD/Strap to DF or HF?	HD location Edge/Interior?	Resultant HD	Force at Window (Kips)	Strap
2 2 2 2	A1 A2 B1 B2	20.75 12.75 19.00 19.50	5.00 6.00 9.00	4.00 4.50 5.00	4.00 3.00 3.50	1.08 1.50 3.00	15.75 6.75 10.00 19.50	1100.00 1100.00 955.00 955.00	0.70 0.30 0.34 0.66	770.00 330.00 323.73 631.27	2.99 1.28 1.26 2.45	2.99 1.28 1.26 2.45	190 190 126 126	1.00 1.00 1.00 1.00	190 190 126 126	SW6 SW6 SW6 SW6	2.00 3.00 4.00 5.00	0.13 0.14 0.16 0.17		0.13 0.14 0.16 0.17	27.2 11.7 11.4 22.3	24.6 10.4 25.5 29.4	0.13 0.10 -0.76 -0.38	flr-flr flr-conc flr-beam flr-beam		Edge Edge Edge Edge	No HD No HD No HD No HD	2.17 1.43 0.81 0.00	CS14 CS16 CS16 No strap
2 2 2	C1 C2 D1	11.00 11.00 34.50	6.00	5.00	6.00	1.08	11.00 11.00 28.50	1100.00 1100.00 700.00	0.50 0.50 1.00	550.00 550.00 700.00	2.14 2.14 2.72	2.14 2.14 2.72	194 194 96	1.00 1.00 1.00	194 194 96	SW6 SW6 SW6	6.00 7.00 8.00	0.19 0.20 0.22		0.19 0.20 0.22	19.4 19.4 24.7	10.2 11.0 116.2	0.88 0.80 -2.69	flr-flr flr-flr flr-flr	HF HF HF	Edge Edge Edge	MST37 MST37 No HD	0.00 0.00 1.90	No strap No strap CS14
	S	= 128.50				Total OSB wall length = (feet)	= 102.50	J	S =	3855.00	14.99	14.99	ОК	Total OSB Capacity (kips)	14.99														
st Stor	y Walls (S	ide / Side	Direction)				Shear	panel capacity (V	Wind or Seismic) =	Seismic													lls (Side / Side ] and window str						
			Ste	tory shear(kips) =							nulated Shear = balance check =																		
			Shear I	Story height (ft) = Panel height (ft) = ragm width (ft) =	9.08					1040																			
Story	Wall Mark	Wall	Shear I	Panel height (ft) =	9.08	Plate to Opening (ft)	Effective Length (ft)	Trib. Area (sq ft)	Percent Sharing (%)	Effective Trib. Width	Story V(kips)	Sum V(kips)	Panel Shear (plf)	Height/Width Reduction (%) R = 2*L/H	Design Panel Shear (plf)		Floor DL Trib(ft)	Story DL(klf)	Walls/DL Stacks?	Sum DL(klf)	OTM (k-ft)	RM (k-ft)	Resultant HD(kips)	HD TYPE	HD/Strap to DF or HF?	HD location Edge/Interior?	Resultant HD	Force at Window (Kips)	Window Strap
Story 1 1		Wall	Shear I Total Diaphr Opening	Panel height (ft) = ragm width (ft) = Opening	9.08 3400.00 Opening (max)					Effective	Story	Sum		Reduction (%)												Edge/Interior? Edge		Window (Kips) 2.93	Strap CMSTC16
Story 1 1 1	Mark A1 A2 B1	Wall L(ft) 20.75 13.00 13.00	Shear I Total Diaphr Opening Width (ft) 9.00	Panel height (ft) = ragm width (ft) = Opening Height (ft) 5.00	9.08 3400.00 Opening (max) to Edge (ft) 2.00	Opening (ft) 1.08	Length (ft) 11.75 4.00 8.00	(sq ft) 1000.00 1000.00 800.00	Sharing (%) 0.75 0.25 1.00	<b>Effective</b> <b>Trib. Width</b> 746.03 253.97 800.00	Story V(kips) 2.20 0.75 2.36	Sum V(kips) 5.19 2.03 6.07	Shear (plf) 442 508 759	Reduction (%) R = 2*L/H 1.00 1.00 1.00	Shear (plf)           442           508           759	Type SW3 SW2 2W3	Trib(ft)           2.00         3.00           4.00         3.00	DL(klf) 0.14 0.16 0.17	Stacks? YES YES NO	DL(klf) 0.27 0.30 0.17	(k-ft) 52.3 20.5 61.2	(k-ft) 52.5 22.7 12.8	HD(kips) -0.01 -0.18 3.87	TYPE flr-flr flr-flr flr-conc	DF or HF? HF HF HF	Edge/Interior? Edge Edge Edge	HD No HD No HD HDU5	Window (Kips) 2.93 2.29 3.60	Strap CMSTC16 CS14 CMSTC16
Story 1 1 1 1 1 1	Mark A1	Wall L(ft) 20.75 13.00	Shear H Total Diaphr Opening Width (ft) 9.00 9.00	Panel height (ft) = ragm width (ft) = Opening Height (ft) 5.00 5.00	9.08 3400.00 Opening (max) to Edge (ft) 2.00 2.00	Opening (ft) 1.08 2.00	Length (ft) 11.75 4.00	(sq ft) 1000.00 1000.00	Sharing (%) 0.75 0.25	<b>Effective</b> <b>Trib. Width</b> 746.03 253.97	Story V(kips) 2.20 0.75	Sum V(kips) 5.19 2.03	Shear (plf) 442 508	Reduction (%) R = 2*L/H 1.00 1.00	Shear (plf)           442           508	Type SW3 SW2	Trib(ft)           2.00         3.00	DL(klf) 0.14 0.16	Stacks? YES YES	DL(klf) 0.27 0.30	(k-ft) 52.3 20.5	(k-ft) 52.5 22.7	HD(kips) -0.01 -0.18	TYPE flr-flr flr-flr	DF or HF? HF HF HF HF	Edge/Interior? Edge Edge	HD No HD No HD	Window (Kips) 2.93 2.29	Strap CMSTC16 CS14
Story 1 1 1 1 1	Mark A1 A2 B1 C1	Wall L(ft) 20.75 13.00 13.00 34.00	Shear H Total Diaphr Opening Width (ft) 9.00 9.00	Panel height (ft) = ragm width (ft) = Opening Height (ft) 5.00 5.00	9.08 3400.00 Opening (max) to Edge (ft) 2.00 2.00	Opening (ft) 1.08 2.00	Length (ft) 11.75 4.00 8.00 34.00	(sq ft) 1000.00 1000.00 800.00 800.00	Sharing (%) 0.75 0.25 1.00 1.00	<b>Effective</b> <b>Trib. Width</b> 746.03 253.97 800.00 800.00	Story V(kips) 2.20 0.75 2.36 2.36	Sum V(kips) 5.19 2.03 6.07 6.64	Shear (plf) 442 508 759 195	Reduction (%) R = 2*L/H 1.00 1.00 1.00 1.00	Shear (plf)           442           508           759           195	Type SW3 SW2 2W3 SW6	Trib(ft)           2.00           3.00           4.00           5.00	DL(klf) 0.14 0.16 0.17 0.18	Stacks? YES YES NO YES	DL(klf) 0.27 0.30 0.17 0.35	(k-ft) 52.3 20.5 61.2 66.9	(k-ft) 52.5 22.7 12.8 183.2	HD(kips) -0.01 -0.18 3.87 -3.47	TYPE flr-flr flr-flr flr-conc flr-conc	DF or HF? HF HF HF HF	Edge/Interior? Edge Edge Edge Edge	HD No HD No HD HDU5 No HD	Window (Kips) 2.93 2.29 3.60 0.00	Strap CMSTC16 CS14 CMSTC16 No strap
Story 1 1 1 1	Mark A1 A2 B1 C1 D1	Wall L(ft) 20.75 13.00 13.00 34.00	Shear H Total Diaphr Opening Width (ft) 9.00 9.00	Panel height (ft) = ragm width (ft) = Opening Height (ft) 5.00 5.00	9.08 3400.00 Opening (max) to Edge (ft) 2.00 2.00 2.00	Opening (ft) 1.08 2.00	Length (ft) 11.75 4.00 8.00 34.00 25.00	(sq ft) 1000.00 1000.00 800.00 800.00 800.00	Sharing (%) 0.75 0.25 1.00 1.00	Effective Trib. Width 746.03 253.97 800.00 800.00 800.00	Story V(kips) 2.20 0.75 2.36 2.36	Sum V(kips) 5.19 2.03 6.07 6.64	Shear (plf) 442 508 759 195 203	Reduction (%) R = 2*L/H 1.00 1.00 1.00 1.00	Shear (plf)           442           508           759           195	Type SW3 SW2 2W3 SW6	Trib(ft)           2.00           3.00           4.00           5.00	DL(klf) 0.14 0.16 0.17 0.18	Stacks? YES YES NO YES	DL(klf) 0.27 0.30 0.17 0.35	(k-ft) 52.3 20.5 61.2 66.9	(k-ft) 52.5 22.7 12.8 183.2	HD(kips) -0.01 -0.18 3.87 -3.47	TYPE flr-flr flr-flr flr-conc flr-conc	DF or HF? HF HF HF HF	Edge/Interior? Edge Edge Edge Edge	HD No HD No HD HDU5 No HD	Window (Kips) 2.93 2.29 3.60 0.00	Strap CMSTC16 CS14 CMSTC16 No strap
Story 1 1 1 1	Mark A1 A2 B1 C1 D1	Wall L(ft) 20.75 13.00 13.00 34.00 25.00	Shear H Total Diaphr Opening Width (ft) 9.00 9.00	Panel height (ft) = ragm width (ft) = Opening Height (ft) 5.00 5.00	9.08 3400.00 Opening (max) to Edge (ft) 2.00 2.00 2.00	Opening (ft) 1.08 2.00 2.00 Total OSB wall length =	Length (ft) 11.75 4.00 8.00 34.00 25.00	(sq ft) 1000.00 1000.00 800.00 800.00 800.00	Sharing (%) 0.75 0.25 1.00 1.00 1.00 S =	Effective Trib. Width 746.03 253.97 800.00 800.00 800.00 800.00	Story V(kips) 2.20 0.75 2.36 2.36 2.36 2.36 2.36	Sum V(kips) 5.19 2.03 6.07 6.64 5.08 25.01	Shear (plf) 442 508 759 195 203 <b>OK</b>	Reduction (%) R = 2*L/H 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Shear (plf)           442           508           759           195           203	Type SW3 SW2 2W3 SW6	Trib(ft)           2.00           3.00           4.00           5.00	DL(klf) 0.14 0.16 0.17 0.18	Stacks? YES YES NO YES	DL(klf) 0.27 0.30 0.17 0.35	(k-ft) 52.3 20.5 61.2 66.9	(k-ft) 52.5 22.7 12.8 183.2	HD(kips) -0.01 -0.18 3.87 -3.47	TYPE flr-flr flr-flr flr-conc flr-conc	DF or HF? HF HF HF HF	Edge/Interior? Edge Edge Edge Edge	HD No HD No HD HDU5 No HD	Window (Kips) 2.93 2.29 3.60 0.00	Strap CMSTC16 CS14 CMSTC16 No strap
1 1 1 1	Mark A1 A2 B1 C1 D1	Wall L(ft) 20.75 13.00 13.00 34.00 25.00 = 105.75	Shear H Total Diaphr Opening Width (ft) 9.00 9.00	Panel height (ft) = ragm width (ft) = $\frac{\text{Opening}}{\text{Height (ft)}}$ $\frac{5.00}{5.00}$ $5.50$	9.08 3400.00 Opening (max) to Edge (ft) 2.00 2.00 2.00	Opening (ft) 1.08 2.00 2.00 Total OSB wall length =	Length (ft) 11.75 4.00 8.00 34.00 25.00 = 82.75	(sq ft) 1000.00 1000.00 800.00 800.00 0 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 10	Sharing (%) 0.75 0.25 1.00 1.00 1.00 S =	Effective Trib. Width 746.03 253.97 800.00 800.00 800.00 800.00	Story V(kips) 2.20 0.75 2.36 2.36 2.36 2.36 2.36	Sum V(kips) 5.19 2.03 6.07 6.64 5.08 25.01	Shear (plf) 442 508 759 195 203 <b>OK</b>	Reduction (%) R = 2*L/H 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Shear (plf)           442           508           759           195           203	Type SW3 SW2 2W3 SW6	Trib(ft)           2.00           3.00           4.00           5.00	DL(klf) 0.14 0.16 0.17 0.18	Stacks? YES YES NO YES	DL(klf) 0.27 0.30 0.17 0.35	(k-ft) 52.3 20.5 61.2 66.9 51.2	(k-ft) 52.5 22.7 12.8 183.2 106.7 Basement Wa	HD(kips) -0.01 -0.18 3.87 -3.47	TYPE flr-flr flr-conc flr-conc flr-conc	DF or HF? HF HF HF HF	Edge/Interior? Edge Edge Edge Edge	HD No HD No HD HDU5 No HD	Window (Kips) 2.93 2.29 3.60 0.00	Strap CMSTC16 CS14 CMSTC16 No strap

Story	Wall Mark	L(ft) L(ft) L(ft)	Height (ft)	to Edge (ft)	Opening (ft)	Effective Length (ft)	Trib. Area (sq ft)	Sharing (%)	Effective Trib. Width	Story V(kips)	Sum V(kips)	Panel Shear (plf)	Reduction (%) R = 2*L/H	Design Panel Shear (plf)		F loor DL Trib(ft)		Walls/DL Stacks?		OTM (k-ft)	RM (k-ft)	Resultant HD(kips)	HD TYPE	HD/Strap to DF or HF?	HD location Edge/Interior?	Resultant HD	Window (Kips)	Strap
В	<b>A1</b>	8.83				8.83	900.00	0.36	324.37	0.48	2.96	335	1.00	335	SW4	2.00	0.14	NO	0.14	14.8	5.1	1.17	flr-conc	HF	Edge	STHD14	0.00	No strap
В	A2	15.67				15.67	900.00	0.64	575.63	0.85	2.76	176	1.00	176	SW6	3.00	0.16	NO	0.16	34.3	17.3	1.12	flr-conc	HF	Edge	STHD14	0.00	No strap
В	<b>B1</b>	13.00				13.00	740.00	1.00	740.00	1.10	3.55	273	1.00	273	CONCRI	ETE FOUN	DATION WA	LL										
В	C1	34.00				34.00	290.00	1.00	290.00	0.43	1.89	56	1.00	56	CONCRI	ETE FOUN	DATION WA	LL										

Project		Sheet number:
	<b>Forest Creek Estates Lot 2</b>	L7
Subject		Date
	SHEAR WALL EQUATION DIAGRAM	11/10/2022



## FORCE TRANSFER AROUND WINDOW CALCULATION (CANTILEVER PIER METHOD)



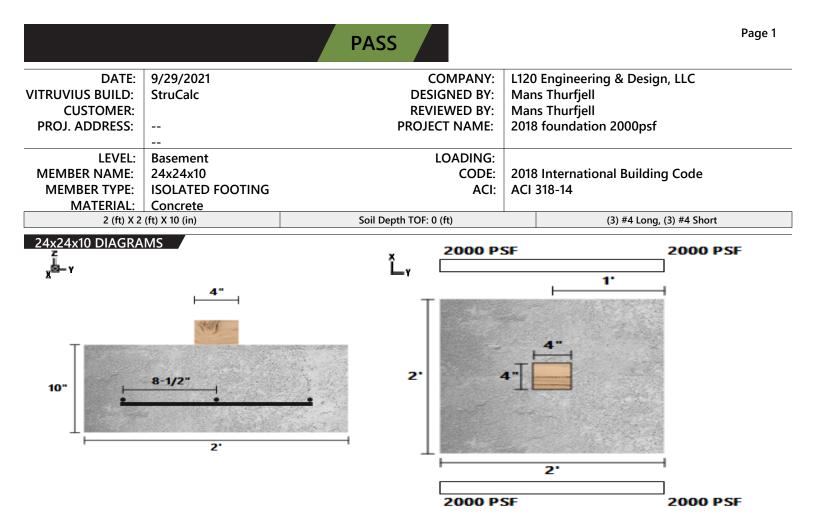
$$V_h = v_i_{panel} \ge L_{max}$$

 $V_v = HD_i$ 

 $\mathbf{V_v}$   $\mathbf{T_h} = \mathbf{V_h} \left( \mathbf{H_w} / 2 + \mathbf{H_s} \right) / \mathbf{H_s}$ 

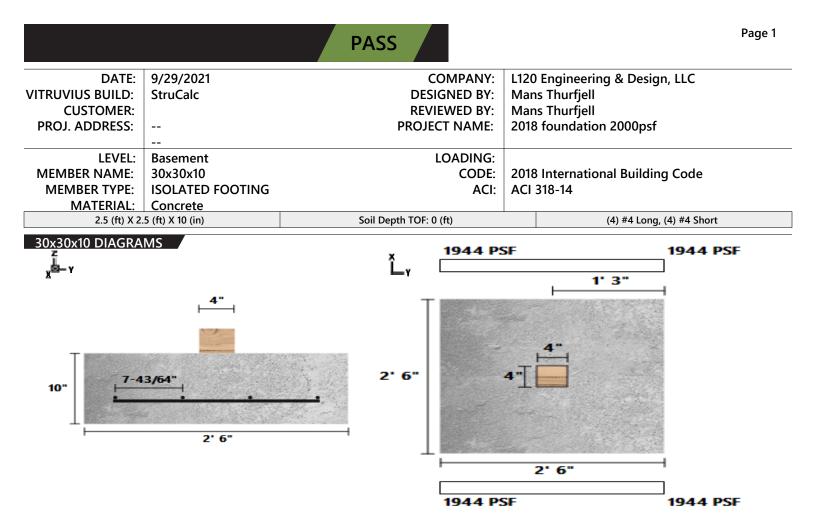
 $T_{y}$  = Is resisted by the continuous stud adjacent to the window.




# FOUNDATION CALCULATIONS

## FOOTING REFERENCE PER PLAN




	Client:			Date:	Jun 3, 2022	
	Author:	Harrison Kliegl		Job #:		
LONGITUD ONE TWENTY ENGINEERING & DESIGN		Footing Checks		Subject:	16" Strip Foor Load - 2000 P	- PAS
	References:	ACI 3	18-14			
imary			Footing Properties			
Allowable Gross Soil Bearing	g	$2000 \mathrm{psf}$	Footing Width		B =	$1.33~{ m ft}$
Stress	$q_a =$	2000 psi	Footing Thickness		H =	8 in
6 Factored Moment Capacity	$\phi M_n =$	$900~{\rm lb\cdot ft/ft}$	Wall Type			Concrete
Factored One-Way Shear Ca	pacity $\phi V_n =$	$2880 \ \mathrm{plf}$	Wall Width		b =	8 in
Stability	Status =	Footing in Total	Concrete Strength		$f_c' =$	$2500 \; \rm psi$
		Compression	Volume of Concrete		$V_c =$	$0.0328 \; \mathrm{yd^3/ft}$
1	1		Soil Properties			
			Allowable Soil Gross Be Capacity	aring	$q_a =$	$2000 \; \mathrm{psf}$
			Lateral Sliding Coefficie Friction	nt of	$\mu =$	0.3
	s ^r t		Bottom Reinforcement			
	h_soil=12 in		Concrete Cover		cover =	3 in
			Reinforcement Yield Str	rength	$f_y =$	$60000~\mathrm{psi}$
	<b>L</b> +		Design Criteria			
•	• H=8 in		Design Code for Load Combinations			International Buildi Code (IBC) 2018
			Sliding and Overturning Factor of Safety	g Minimum	$FS_{\min} =$	1.5
·	B=16 in		Comments			

Comments



MATERIAL PROPE	ERTIES						
FOOTING							
fc' (psi)	Ec (psi)	Density (lbf/ft ³ )	Width (ft)		Length (ft)	Depth (in)	Volume (ft ³ )
2500	2880952	145	2		2	10	3.33
CALCULATION VARIABLE	s						
Bo (in)	Ф-Х	Φ-Υ					
42	0	0					
COLUMN							
Width (in)	Length (in)	Material	Offset (in)				
4	4	Wood	0				
SOIL							
Bearing Strength (lbf/ft ² )	Density (lbf/ft ³ )	Cohesion	Friction Angle		Depth (ft)	Rankine Coefficient (Kp)	
2000	140	0	30		0	3	
REBAR							
Bar Size #	# Bars Long	# Bars Short	fy (psi)		Es (psi)		
4	3	3	40000		2.9E+07		
PASS-FAIL							
		PASS/FAIL	MAGNITUDE	STRENGTH	LOAD	СОМВО	
Soil Bearing	g Pressure (lbf/ft²)	PASS (0.0%)	2000.0	2000.0		D+L	
Two-Way Shea	ar (Punching) (lbf)	PASS (72.6%)	11200.0	40950.0	1.2D+1	.6L+0.5Lr	
One	-Way Shear X (lbf)	PASS (86.0%)	1633.3	11700.0	1.2D+1	.6L+0.5Lr	
	Moment X (lbf-ft)	PASS (39.2%)	1944.4	3200.0	1.2D+1	.6L+0.5Lr	
One	-Way Shear Y (lbf)	PASS (86.0%)	1633.3	11700.0	1.2D+1	.6L+0.5Lr	
	Moment Y (lbf-ft)	PASS (39.2%)	1944.4	3200.0	1.2D+1	.6L+0.5Lr	
	Crushing (psi)	PASS (49.3%)	700.0	1381.3	1.2D+1	.6L+0.5Lr	
LOAD LIST							
Type	Left Magnitude	Right Magnitude	e Load Start (f	ft)	Load End (ft)	Load Type	Directio

Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Point (lbf)	4000	-	0	-	Dead	Z
Point (lbf)	4000	-	0	-	Live	Z



MATERIAL PR	OPERTIES						
FOOTING							
fc' (psi)	Ec (psi)	Density (lbf/ft ³ )	Width (ft)		Length (ft)	Depth (in)	Volume (ft ³ )
2500	2880952	145	2.5		2.5	10	5.21
CALCULATION VARI	ABLES						
Bo (in)	Ф-Х	Φ-Υ					
42	0	0					
COLUMN							
Width (in)	Length (in)	Material	Offset (in)				
4	4	Wood	0				
SOIL							
earing Strength (lbf/	/ft ² ) Density (lbf/ft ³ )	Cohesion	Friction Angle		Depth (ft)	Rankine Coefficient (Kp)	)
2000	140	0	30		0	3	
REBAR							
Bar Size #	# Bars Long	# Bars Short	fy (psi)		Es (psi)		
4	4	4	40000		2.9E+07		
PASS-FAIL							
		PASS/FAIL	MAGNITUDE	STRENGTH	LOAD	СОМВО	
Soil Be	earing Pressure (lbf/ft ² )	PASS (2.8%)	1944.0	2000.0	[	D+L	
Two-Way	v Shear (Punching) (lbf)	PASS (58.4%)	17040.0	40950.0	1.2D+1	.6L+0.5Lr	
	One-Way Shear X (lbf)	PASS (74.8%)	3692.0	14625.0	1.2D+1	.6L+0.5Lr	
	Moment X (lbf-ft)	PASS (0.0%)	3999.7	4000.0	1.2D+1	.6L+0.5Lr	
	One-Way Shear Y (lbf)	PASS (74.8%)	3692.0	14625.0	1.2D+1	.6L+0.5Lr	
	Moment Y (lbf-ft)	PASS (0.0%)	3999.7	4000.0	1.2D+1	.6L+0.5Lr	
	Crushing (psi)	PASS (22.9%)	1065.0	1381.3	1.2D+1	.6L+0.5Lr	
LOAD LIST							
Туре	Left Magnitude	Right Magnitude	e Load Start (f	t)	Load End (ft)	Load Type	Directio
Point (lbf)	6000	-	0		-	Dead	Z
Point (lbf)	6150	-	0		-	Live	Z

$\mathbf{X}$		Client:		Date:	Jul 29, 2022
	LONGITUDE ONE TWENTY [®]	Author:	Harrison Kliegl	Job #:	
	ENGINEERING & DESIGN	Project:	2000 PSF Retaining Walls	Subject:	Member Schedule

	Calculation	Member	Quantity	Comments
78%	4'-0" Max Retaining Wall			
77%	6'-0" Max Retaining Wall			
79%	8'-0" Max Retaining Wall			
79%	8'-0" Max Retaining Wall with 40 psf Surcharge			
80%	9'-6" Max Retaining Wall			
80%	10'-6" Max Retaining Wall			
93%	13'-0" Max Retaining Wall			

SEE NEW CALC AT END FOR 13'-0" RETAINING WALL WITH SURCHARGE LOADING

United States (version 40)

$\sqrt{2}$		Clie	nt:				Da	te:	Jul 29,	2022		
A	LONGITU		hor:	Harrison Kliegl			Joł	) #:				
	ENGINEERING & DE	GIGN Proj	ject:	2000 PSF Retaining Wa	alls		Su	bject:	Proje	t Defaults		
Design Criteria	I					Minimum E	Beam Depth $d_m$	_{in} (in)	Maximum Bear	n Depth $d_{max}$ (in)		
Des	ign Code Full Name		code =	International Building Code (IBC) 2018				0		24		
	itionally Include Sim	lified			Default Roof Load	ds						
	LL Service Load Com			Yes	Defaul	t Roof Loa	ds		loads	$_{roof} =$		
Def	ection Span Limits		$\Delta_{span} =$		Superimposed Dead Load w _D (psf)	Roof Live Load $w_{Lr}$	Alternat Minimum Li	ve Load	Snow Load w _S	Ultimate Wind Uplift (C&C) $w_{Wu}$	Ultimate V Downward	I (C&C)
Member Type type	Short-Term (L, Lr, S, or W) I (L/)	D _{ST} Long-Te	rm (kD+L) D _{LT} (L/)	Simplified DL+LL (D+L) $D_{DL+LL}$ (L/)	15	(psf) 20	$P_{Lr2}$ (	_{b)}	(psf) 30	(psf) 30	$w_{Wd}$ (ps	osf)
Roof		180	120	100						50		
Ceiling		240	180	120	Default Ceiling Lo							
Floor		360	240	180		t Ceiling Lo		e Load $w_L$	$loads_{ce}$	<i>iling =</i> native Minimum Live Loa		
Wall		240	1	100	superimpos	ed Dead Load u	5	e Load w _L	20 Alter	native minimum tive too	0	
۸bc	olute Deflection Limi	<u> </u>	$\Delta_{lim} =$		Default Floor Loa	ds						
	ault Bearing Length		$\Delta_{lim} = l_b =$		Defaul	t Floor Loa	ads		loads	(I		
Building Geor	0 0		0			ed Dead Load u		e Load $w_L$		native Minimum Live Loa	ad $P_{L2}$ (lb)	
	nber of Stories		$n_{story} =$	2			10		40		0	
	f Slope			<b>6</b> : 12	Default Wall & Wi	ndow Loa	ds					
	ault Member Spacing	s	spacings =		Defaul	t Total Wa	ll & Windo	w		_		
	Rafters $s_{raft}$ (in)	Joists $s_{joist}$ (in)	Wall Studs $s_{studs}$ (i	n)	Dead L				,	+window =		
	16	16		16	Total Weight of Interior (psf)	Wall $w_{D,IW}$	Total We	ght of Exte (psf	rior Wall $w_{D,EW}$ )	Total Weight	of Window $w_{D,u}$ (psf)	vindow
Тор	Floor Height Dimens	ions	$h_{top.floor} =$			5				30		1
Story Height (Floor t (ft)		Floor to Ceiling) h _{hea} (ft)		Height (Floor to Top of Window) $h_{window}$ (ft)	Defaul Wind L		Wall & Wi	ndow	$w_{W,wall}$	+window =		
	12		10	8			oad (C&C) $w_{Wd}$	(psf)	Ultimate Outwa	rd Wind Load (C&C) $w_W$	4 (psf)	
Low	er Floors Height Dim	ensions h	lower.floors =					30			30	
Story Height (Floor t (ft)	Floor) $h_{story}$ Headroom	Floor to Ceiling) $h_{hee}$ (ft)	Window I	Height (Floor to Top of Window) $h_{window}$ (ft)	Default Railing Pr	operties						
	12		10	8		Height			h	$_{iling} = 4 \text{ ft}$		
Max	imum Roof Beam De	pth	$d_{max,R} =$	$24\mathrm{in}$	0	Total Wei	ght			uing = 4 R uing = 20 plf		
	or Beam Depth Limits		$d_{min/max} =$		Kanng		0		$\sim D,ra$	ung 20 ph		

	Client:			Date:	Jul 29, 2022	
	Author:	Harrison Kliegl		Job #:		
ONE TWENTY [®]	Project:	2000 PSF Retaining W	Valls	Subject:	4'-0" Max Ret	aining Wall PASS
ENGINEERING & DESIGN	References:	IBC 20	18, ASCE 7-16			
			·			
Stability Summary			Base Soil Properties			c
Lateral Force Transmitted to Footing Restraint	$F_{restraint} =$	$0 \; \rm kip/ft$	Source of Soil Propertie Concrete Properties	es		Same as Backfill
78% Overturning Factor of Safety	$FS_{overturn} =$	1.91	Concrete Strength		$f_c' =$	2500 psi
Maximum Bearing Pressure	$q_{max} =$	$1310 \; \mathrm{psf}$	Reinforcement Yield St	rength	$f_y =$	$60000~\mathrm{psi}$
66% Soil Allowable Bearing Capacity	$q_a =$	$2000 \; \mathrm{psf}$	Volume of Concrete		$V_c =$	$0.216 \ \mathrm{yd^3/ft}$
Stem Summary			Stem Reinforcement			
26% Moment Capacity of Wall Stem	$\phi M_{n,stem} =$	$3.66 \; \rm kip \cdot ft/ft$	Stem Concrete Cover		$c_{stem} =$	1.5 in
11% Shear Capacity of Wall Stem	$\phi V_{n,stem} =$	$5.63\rm kip/ft$	Heel Reinforcement (Top Bars)			
Heel Summary			Heel Concrete Cover		$c_{heel} =$	3  in
4% Moment Capacity of Heel	$\phi M_{n\ heel} =$	$9.85 \ \mathrm{kip} \cdot \mathrm{ft/ft}$	Toe Reinforcement (Bottom Bars)			
11% Shear Capacity of Wall Base	$\phi V_{n,heel} =$		Include Toe Reinforcen	nent?		Yes
	$\varphi$ v n, heel -	1.00 Klp/10	Toe Concrete Cover		$c_{toe} =$	$3 \mathrm{in}$
Toe Summary	(35		Heel Reinforcement Depth & Space	cing		
7% Moment Capacity of Toe		$9.85~{\rm kip}\cdot{\rm ft/ft}$	Area of Heel Reinforcer	ment	$A_{s,heel} =$	$0.259 \ \mathrm{in^2/ft}$
5% Shear Capacity of Toe	$\phi V_{n,toe} =$	$7.88 \rm \; kip/ft$	Toe Reinforcement Depth & Spac	ing		
Key Dimensions			Area of Toe Reinforcem	nent	$A_{s,toe} =$	$0.259~{\rm in^2/ft}$
Wall Height	H =	6 ft	Design Criteria			
Thickness of Wall Stem at Base	$t_{stem} =$	8 in	Design Code for Load		code =	International Building Code (IBC) 2018
Thickness of Wall Stem at Top	$t_{stem,top} =$		Combinations		0000	Code (IBC) 2018
Length of Heel	$L_{heel} =$		Retaining Wall Moveme Condition	ent		Active Case (Ka)
Thickness of Footing Surcharge	$t_{footing} =$	12 m	Footing Restrained Aga Sliding?	iinst		Yes
Dead Load Surcharge is Directly Above Heel?		No	Consider Resisting Soil for Stability Checks?	Pressures		No
Soil Properties			Consider Soil Above To	e for		No
Height of Backfill	$h_{bf} =$	5 ft	Stability Checks?			NU
Depth of Soil Cover to Bottom o Footing	f $h_{cov} =$	1.5 ft	Consider Resisting Pres Soil Above Toe for Stre Design?			No
		Equivalent Fluid	Soil Unit Weight			
Lateral Pressure Method		Pressure - Custom Values	Soil Unit Weight		$\gamma =$	125 pcf
Soil Unit Weight	$\gamma_{input} =$	$125~{ m pcf}$	Ŭ		·	-

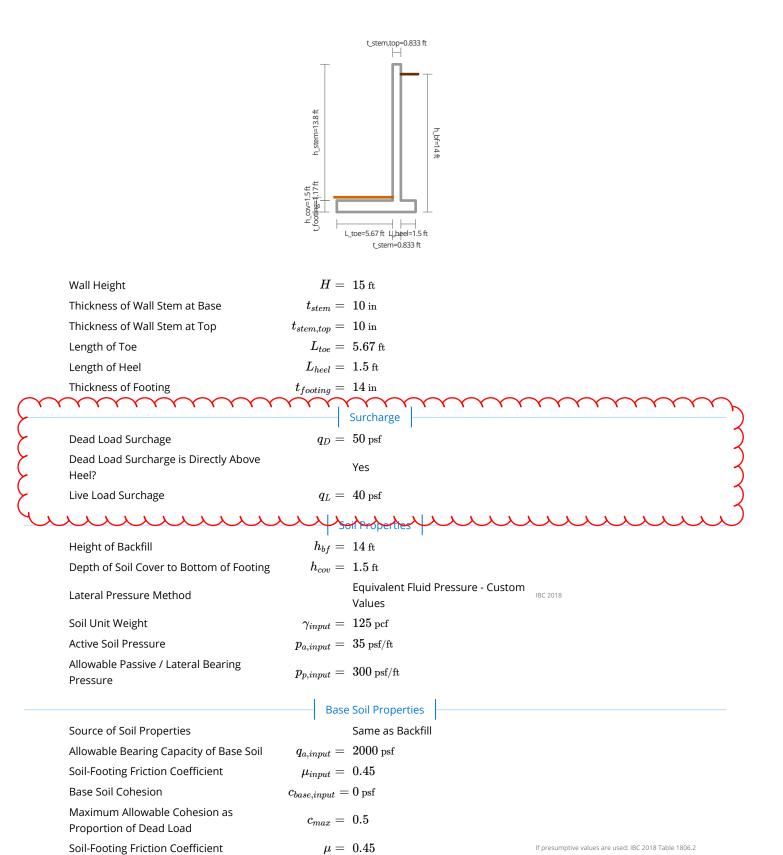
	Client:			Date:	Jul 29, 2022		
	Author:	Harrison Kliegl		Job #:			
	Project:	2000 PSF Retaining Wal	lls	Subject:	6'-0" Max Ret	aining Wall	PASS
	References:	IBC 2018	, ASCE 7-16	1			
Stability Summary			Base Soil Properties				
Lateral Force Transmitted to Footing Restraint	$F_{restraint} =$	$0 \; \rm kip/ft$	Source of Soil Propertie Concrete Properties	es		Same as Bac	kfill
62% Overturning Factor of Safety Maximum Bearing Pressure 56% Soil Allowable Bearing Capacity Stem Summary		2.41 1120 psf 2000 psf	Concrete Strength Reinforcement Yield St Volume of Concrete	rength	$f_y =$	$\begin{array}{l} 2500 \; \mathrm{psi} \\ 60\; 000 \; \mathrm{psi} \\ 0.321 \; \mathrm{yd^3/ft} \end{array}$	
<ul><li>77% Moment Capacity of Wall Stem</li><li>23% Shear Capacity of Wall Stem</li></ul>	$\phi M_{n,stem} = \ \phi V_{n,stem} =$	$\begin{array}{l} 3.66~{\rm kip}\cdot{\rm ft/ft}\\ 5.63~{\rm kip/ft} \end{array}$	Stem Reinforcement Stem Concrete Cover Heel Reinforcement (Top Bars)		$c_{stem} =$		
Heel Summary         14%       Moment Capacity of Heel         24%       Shear Capacity of Wall Base	$\phi M_{n,heel} = \ \phi V_{n,heel} =$	$\begin{array}{l} 9.85 \; \mathrm{kip} \cdot \mathrm{ft}/\mathrm{ft} \\ 7.88 \; \mathrm{kip}/\mathrm{ft} \end{array}$	Heel Concrete Cover Toe Reinforcement (Bottom Bars) Include Toe Reinforcem Toe Concrete Cover		$c_{heel} =$	Yes	
Toe Summary         24%       Moment Capacity of Toe         20%       Shear Capacity of Toe	,	$9.85  \mathrm{kip} \cdot \mathrm{ft/ft}$ $7.88  \mathrm{kip/ft}$	Heel Reinforcement Depth & Spa Area of Heel Reinforce Toe Reinforcement Depth & Spac	ment		$0.259~{\rm in^2/ft}$	
Key Dimensions Wall Height	H =	8 ft	Area of Toe Reinforcen		$A_{s,toe} =$	$0.259 \ \mathrm{in^2/ft}$	
Thickness of Wall Stem at Base Thickness of Wall Stem at Top	$t_{stem} = t_{stem,top} =$		Design Code for Load Combinations		code =	Internationa Code (IBC) 20	l Building 018
Length of Heel Thickness of Footing	$L_{heel} = t_{footing} =$		Retaining Wall Moveme Condition			Active Case (	Ka)
Surcharge Dead Load Surcharge is Directly		No	Footing Restrained Aga Sliding? Consider Resisting Soil			Yes	
Above Heel? Soil Properties			for Stability Checks? Consider Soil Above To Stability Checks?	be for		No	
Height of Backfill Depth of Soil Cover to Bottom o Footing	$h_{bf} =$ f $h_{cov} =$		Consider Resisting Pres Soil Above Toe for Stre Design?			No	
Lateral Pressure Method		Pressure - Custom Values	Soil Unit Weight			105 -	
Soil Unit Weight	$\gamma_{input} =$		Soil Unit Weight		$\gamma =$	125  pcf	

	Client:			Data	1.1.20.2022		
14/				Date:	Jul 29, 2022		
	Author:	Harrison Kliegl		Job #:			
ONE TWENTY [®] ENGINEERING & DESIGN	Project:	2000 PSF Retaining W	/alls	Subject:	8'-0" Max Ret	aining Wall	PASS
	References:	IBC 20	18, ASCE 7-16				
Stability Summary			Base Soil Properties				
Lateral Force Transmitted to Footing Restraint	$F_{restraint} =$	$0.136~{\rm kip/ft}$	Source of Soil Propertie	25		Same as Backfill	I
79% Overturning Factor of Safety	$FS_{overturn} =$	1.91	Concrete Strength		$f_c' =$	2500 psi	
Maximum Bearing Pressure	$q_{max} =$	$1420 \; \mathrm{psf}$	Reinforcement Yield Str	rength	$f_y =$	$60000~\mathrm{psi}$	
71% Soil Allowable Bearing Capacity	$q_a =$	$2000 \; \mathrm{psf}$	Volume of Concrete		$V_c =$	$0.38 \; \mathrm{yd^3/ft}$	
Stem Summary			Stem Reinforcement				
70% Moment Capacity of Wall Stem	$\phi M_{n,stem} =$	$7.12 \; \rm kip \cdot ft/ft$	Stem Concrete Cover		$c_{stem} =$	$1.5\mathrm{in}$	
33% Shear Capacity of Wall Stem	$\phi V_{n,stem} =$	$5.63\rm kip/ft$	Heel Reinforcement (Top Bars)				
Heel Summary			Heel Concrete Cover		$c_{heel} =$	3 in	
11% Moment Capacity of Heel	$\phi M_{n had} =$	$10.1  \mathrm{kip} \cdot \mathrm{ft}/\mathrm{ft}$	Toe Reinforcement (Bottom Bars)				
22% Shear Capacity of Wall Base	$\phi V_{n,heel} =$		Include Toe Reinforcem	ient?		Yes	
	$\varphi v_{n,heel} -$	1.00 kip/it	Toe Concrete Cover		$c_{toe} =$	$3 \mathrm{~in}$	
Toe Summary			Heel Reinforcement Depth & Space	ing			
46% Moment Capacity of Toe	$\phi M_{n,toe} =$	$10.1 \; \rm kip \cdot ft/ft$	Area of Heel Reinforcer	nent	$A_{s,heel} =$	$0.267~\mathrm{in^2/ft}$	
35% Shear Capacity of Toe	$\phi V_{n,toe} =$	$7.88 \rm \; kip/ft$	Toe Reinforcement Depth & Spaci	ng			
Key Dimensions			Area of Toe Reinforcem	ient	$A_{s,toe} =$	$0.267~\mathrm{in^2/ft}$	
Wall Height	H =	$10 \; {\rm ft}$	Design Criteria				
Thickness of Wall Stem at Base	$t_{stem} =$		Design Code for Load		code =	International Bu Code (IBC) 2018	uilding
Thickness of Wall Stem at Top	$t_{stem,top} =$		Combinations		couc	Code (IBC) 2018	
Length of Heel	$L_{heel} =$		Retaining Wall Moveme Condition	ent		Active Case (Ka)	1
Thickness of Footing Surcharge	$t_{footing} =$	12 m	Footing Restrained Aga Sliding?	inst		Yes	
Dead Load Surcharge is Directly Above Heel?		No	Consider Resisting Soil for Stability Checks?	Pressures		No	
Soil Properties			Consider Soil Above To	e for		No	
Height of Backfill	$h_{bf} =$	9 ft	Stability Checks?	cure from			
Depth of Soil Cover to Bottom o Footing	f $h_{cov} =$		Consider Resisting Pres Soil Above Toe for Strer Design?			No	
Lateral Pressure Method		Equivalent Fluid Pressure - Custom	Soil Unit Weight				
		Values	Soil Unit Weight		$\gamma =$	125 pcf	
Soil Unit Weight	$\gamma_{input} =$	$125~{ m pcf}$				-	

Client:		Date:	Jul 29, 2022		
Author: Harrison	Kliegl	Job #:			
LONGITUDE ONE TWENTY° ENGINEERING & DESIGN Project: 2000 PSI	Retaining Walls	Subject:	8'-0" Max Retaining psf Surcharge	Wall with 40	PASS
References:	IBC 2018, ASCE 7-16				
Stability Summary	Base Soil Properties				
Lateral Force Transmitted to $F_{restraint}=~0.18$	2 kip/ft Source of Source of Source of Source of Source Properties	oil Properties		Same as Back	till
79%) Overturning Factor of Safety $FS_{overturn} = 1.9$	Concrete S	trength	$f_c' =$	2500 psi	
Maximum Bearing Pressure $q_{max}=~139$	) pof	nent Yield Strengtl		60 000 psi	
69%) Soil Allowable Bearing Capacity $q_a=~2000$	0 psf Volume of	Concrete	$V_c =$	$0.386 \; \mathrm{yd^3/ft}$	
Stem Summary	Stem Reinforcement				
75% Moment Capacity of Wall Stem $\phi M_{n,stem}=~7.12$	kip · ft/ft Stem Conc	rete Cover	$c_{stem} =$	1.5 in	
34% Shear Capacity of Wall Stem $\phi V_{n,stem} = 5.63$	kip/ft Heel Reinforcement (	Top Bars)			
Heel Summary	Heel Concr	ete Cover	$c_{heel} =$	3  in	
11% Moment Capacity of Heel $\phi M_{n,heel} = 10.1$	kip · ft/ft	ottom Bars)			
23%) Shear Capacity of Wall Base $\phi V_{n,heel} = 7.88$	Include To	e Reinforcement?		Yes	
Toe Summary	Toe Concre	ete Cover	$c_{toe} =$	$3 \mathrm{~in}$	
	Heel Reinforcement [	Depth & Spacing			
51% Moment Capacity of Toe $\phi M_{n,toe} = 10.1$	Area of He	el Reinforcement	$A_{s,heel} =$	$0.267~{\rm in^2/ft}$	
37% Shear Capacity of Toe $\phi V_{n,toe} = 7.88$	kip/ft Toe Reinforcement D	epth & Spacing			
Key Dimensions		e Reinforcement	$A_{s,toe} =$	$0.267~{\rm in^2/ft}$	
Wall Height $H = 10  \mathrm{ft}$	Design Criteria				
Thickness of Wall Stem at Base $t_{stem}=8~{ m in}$ Thickness of Wall Stem at Top $t_{stem,top}=8~{ m in}$	Design Coo Combinati		code =	International Code (IBC) 20	Building
Thickness of Wall Stem at Top $t_{stem,top}=8$ in Length of Heel $L_{heel}=1.25$		Vall Movement			
Thickness of Footing $t_{footing} = 12$ in	Condition			Active Case (k	(a)
Surcharge	Footing Re	strained Against		Yes	
Dead Load Surcharge is Directly No Above Heel?	Sliding? Consider R for Stabilit	esisting Soil Press / Checks?	ures	No	
Soil Properties		oil Above Toe for		No	
Height of Backfill $h_{bf}=~9~{ m ft}$	Stability Ch			No	
Depth of Soil Cover to Bottom of $h_{cov}=~1.5~{ m fm}$ Footing		esisting Pressure Toe for Strength	from	No	
	valent Fluid				
Lateral Pressure Method Pres Valu	Sule - Custolli	eight	$\gamma =$	125 pcf	
Soil Unit Weight $\gamma_{input}=~125$		-	,	•	

\V/	Client:			Date:	Jul 29, 2022	
	Author:	Harrison Kliegl		Job #:		
	Project:	2000 PSF Retaining W	alls	Subject:	9'-6" Max Ret	aining Wall PASS
	References:	IBC 201	8, ASCE 7-16			
Stability Summary			Base Soil Properties			
Lateral Force Transmitted to Footing Restraint	$F_{restraint} =$	$0.385~\mathrm{kip/ft}$	Source of Soil Propertie	es		Same as Backfill
80% Overturning Factor of Safety	$FS_{overturn} =$	1.88	Concrete Strength		f'	2500 psi
Maximum Bearing Pressure	$q_{max} =$	$1350 \ \mathrm{psf}$	Reinforcement Yield Sti	rength	•0	60 000 psi
68% Soil Allowable Bearing Capacit	y $q_a =$	$2000 \mathrm{psf}$	Volume of Concrete	rengen	- 5	$0.454 \text{ yd}^3/\text{ft}$
Stem Summary			Stem Reinforcement		• c	0.10194/10
80% Moment Capacity of Wall Sten	$\phi M_{\rm m} =$	$10.4  \mathrm{kip} \cdot \mathrm{ft}/\mathrm{ft}$	Stem Concrete Cover		$c_{stem} =$	1.5 in
46% Shear Capacity of Wall Stem	$\phi V_{n.stem} =$	- /	Heel Reinforcement (Top Bars)		-stem	210
Heel Summary	$\varphi$ , stem —	0.00 kip/it	Heel Concrete Cover		$c_{heel} =$	3 in
	176	10.1	Toe Reinforcement (Bottom Bars)	1		
13% Moment Capacity of Heel	,,	$10.1 \; \rm kip \cdot ft/ft$	Include Toe Reinforcem	nent?		Yes
26% Shear Capacity of Wall Base	$\phi V_{n,heel} =$	$7.88 \ \mathrm{kip/ft}$	Toe Concrete Cover		$c_{toe} =$	3 in
Toe Summary			Heel Reinforcement Depth & Space	cing		
58% Moment Capacity of Toe	$\phi M_{n,toe} =$	$14.9~{\rm kip}\cdot{\rm ft}/{\rm ft}$	Area of Heel Reinforcer	ment	$A_{s,heel} =$	$0.267~{ m in^2/ft}$
49% Shear Capacity of Toe	$\phi V_{n,toe} =$	$7.88 \; \rm kip/ft$	Toe Reinforcement Depth & Spaci	ing		
Key Dimensions			Area of Toe Reinforcem	nent	$A_{s,toe} =$	$0.4 \ \mathrm{in^2/ft}$
Wall Height	H =	$11.5~{ m ft}$	Design Criteria			
Thickness of Wall Stem at Base	e $t_{stem} =$	8 in	Design Code for Load		1.	International Building
Thickness of Wall Stem at Top	$t_{stem,top} =$	8 in	Combinations		code =	International Building Code (IBC) 2018
Length of Heel	$L_{heel} =$		Retaining Wall Moveme	ent		Active Case (Ka)
Thickness of Footing	$t_{footing} =$	$12 \mathrm{~in}$	Condition Footing Restrained Aga	inst		
Surcharge			Sliding?	IIIISt		Yes
Dead Load Surcharge is Direct Above Heel?	ly	No	Consider Resisting Soil for Stability Checks?	Pressures		No
Soil Properties			Consider Soil Above To	e for		No
Height of Backfill	$h_{bf} =$	$10.5 \; \mathrm{ft}$	Stability Checks?	r.		
Depth of Soil Cover to Bottom Footing	of $h_{cov} =$	1.5 ft	Consider Resisting Pres Soil Above Toe for Strei Design?			No
		Equivalent Fluid	Soil Unit Weight			
Lateral Pressure Method		Pressure - Custom Values	Soil Unit Weight		$\gamma =$	$125~{ m pcf}$
Soil Unit Weight	$\gamma_{input} =$	$125~{ m pcf}$			1	- •
5	, _F .uv	-				

	Client:			Date:	Jul 29, 2022	
	Author:	Harrison Kliegl		Job #:		
ONE TWENTY	Project:	2000 PSF Retaining \	Valls	Subject:	10'-6" Max Re	taining Wall PASS
ENGINEERING & DESIGN	-			-		
	References:	IBC 20	018, ASCE 7-16			
Stability Summary			Base Soil Properties			
Lateral Force Transmitted to Footing Restraint	$F_{restraint} =$	$0.587 \rm \; kip/ft$	Source of Soil Properties	5		Same as Backfill
80% Overturning Factor of Safety	$FS_{overturn} =$	1.87	Concrete Strength		f'	2500 psi
Maximum Bearing Pressure	$q_{max} =$	$1300 \; \mathrm{psf}$	Reinforcement Yield Stre	anoth	• 0	60 000 psi
65% Soil Allowable Bearing Capacity	$q_a =$	$2000 \; \mathrm{psf}$	Volume of Concrete		- 5	$0.506 \text{ vd}^3/\text{ft}$
Stem Summary			Stem Reinforcement			0.000 j 2 /
75% Moment Capacity of Wall Stem	$\phi M_{n,stem} =$	15 kin · ft/ft	Stem Concrete Cover		$c_{stem} =$	1.5 in
	,	- ,	Heel Reinforcement (Top Bars)		-stem	1.0
	$\phi V_{n,stem} =$	5.05 kip/ft	Heel Concrete Cover		$c_{heel} =$	3 in
Heel Summary			Toe Reinforcement (Bottom Bars)		Cheel —	0
14% Moment Capacity of Heel	$\phi M_{n,heel} =$	$10.1 \; \rm kip \cdot ft/ft$	Include Toe Reinforceme	ant?		Yes
28% Shear Capacity of Wall Base	$\phi V_{n,heel} =$	$7.88 \; \rm kip/ft$	Toe Concrete Cover		$c_{toe} =$	
Toe Summary			– Heel Reinforcement Depth & Spaci	ng	100	-
57% Moment Capacity of Toe	$\phi M_{n,toe} =$	$21.7 \: \rm kip \cdot ft/ft$	Area of Heel Reinforcem		$A_{e heel} =$	$0.267~{ m in^2/ft}$
58% Shear Capacity of Toe	$\phi V_{n,toe} =$	$7.88 \rm \ kip/ft$	Toe Reinforcement Depth & Spacir		s,neei	0.201 11 / 10
Key Dimensions			Area of Toe Reinforceme	0	$A_{s,toe} =$	$0.6 \text{ in}^2/\text{ft}$
Wall Height	H =	12.5 ft	Design Criteria		s, <i>toe</i>	0.0 m / 10
Thickness of Wall Stem at Base	$t_{stem} =$	8 in	Design Code for Load			Interneties of Duilding
Thickness of Wall Stem at Top	$t_{stem,top} =$	8 in	Combinations		code =	International Building Code (IBC) 2018
Length of Heel	$L_{heel} =$	$1.25~{\rm ft}$	Retaining Wall Movemer	nt		Active Case (Ka)
Thickness of Footing	$t_{footing} =$	$12 \mathrm{~in}$	Condition			
Surcharge			Footing Restrained Again Sliding?	nst		Yes
Dead Load Surcharge is Directly Above Heel?		No	Consider Resisting Soil P for Stability Checks?	ressures		No
Soil Properties			Consider Soil Above Toe	for		No
Height of Backfill	$h_{bf} =$	$11.5~{ m ft}$	Stability Checks?	_		
Depth of Soil Cover to Bottom o Footing	f $h_{cov} =$	1.5 ft	Consider Resisting Press Soil Above Toe for Stren Design?			No
		Equivalent Fluid	Soil Unit Weight			
Lateral Pressure Method		Pressure - Custom Values	Soil Unit Weight		$\sim -$	125 pcf
			JOIL OTHER WEIGHT		1 —	rao por


	Client:			Date:	Jul 29, 2022	
	Author:	Harrison Kliegl		Job #:		
ONE TWENTY®	Project:	2000 PSF Retaining Wa	lls	Subject:	13'-0" Max Re	etaining Wall PASS
ENGINEERING & DESIGN	References:	IBC 2018	3, ASCE 7-16			
Stability Summary			Base Soil Properties			
Lateral Force Transmitted to Footing Restraint	$F_{restraint} =$	$0.891 \; \rm kip/ft$	Source of Soil Propertie	25		Same as Backfill
<ul> <li>Overturning Factor of Safety</li> <li>Maximum Bearing Pressure</li> <li>61% Soil Allowable Bearing Capacity</li> <li>Stem Summary</li> </ul>		2.09 1210 psf 2000 psf	Concrete Strength Reinforcement Yield Str Volume of Concrete Stem Reinforcement	rength	$f_y =$	$\begin{array}{l} 2500 \ \mathrm{psi} \\ 60 \ 000 \ \mathrm{psi} \\ 0.773 \ \mathrm{yd}^3/\mathrm{ft} \end{array}$
76% Moment Capacity of Wall Stem 64% Shear Capacity of Wall Stem	$\phi M_{n,stem} = \ \phi V_{n,stem} =$	$26.8~{\rm kip}\cdot{\rm ft}/{\rm ft}$ $7.37~{\rm kip}/{\rm ft}$	Stem Concrete Cover Heel Reinforcement (Top Bars) Heel Concrete Cover		$c_{stem} =$	
Heel Summary 10% Moment Capacity of Heel 33% Shear Capacity of Wall Base Toe Summary	$\phi M_{n,heel} = \ \phi V_{n,heel} =$	$24.3 \rm  kip \cdot ft/ft$ $9.68 \rm  kip/ft$	Toe Reinforcement (Bottom Bars) Include Toe Reinforcem Toe Concrete Cover		$c_{toe} =$	Yes
93% Moment Capacity of Toe 65% Shear Capacity of Toe		$24.3~{\rm kip}\cdot{\rm ft}/{\rm ft}$ 9.68 kip/ft	Heel Reinforcement Depth & Space Area of Heel Reinforcer Toe Reinforcement Depth & Space	ment	$A_{s,heel} =$	$0.533~\mathrm{in^2/ft}$
Key Dimensions Wall Height	H =	15 ft	Area of Toe Reinforcem Design Criteria	nent	$A_{s,toe} =$	$0.533~{\rm in^2/ft}$
Thickness of Wall Stem at Base Thickness of Wall Stem at Top	$t_{stem} = t_{stem,top} =$		Design Code for Load Combinations		code =	International Building Code (IBC) 2018
Length of Heel Thickness of Footing	$L_{heel} = t_{footing} =$		Retaining Wall Moveme Condition			Active Case (Ka)
Surcharge			Footing Restrained Aga Sliding?	linst		Yes
Dead Load Surcharge is Directly Above Heel?		No	Consider Resisting Soil for Stability Checks?	Pressures		No
Soil Properties	7	14.0	Consider Soil Above To Stability Checks?	e for		No
Height of Backfill Depth of Soil Cover to Bottom o Footing	$h_{bf} = h_{cov} =$		Consider Resisting Pres Soil Above Toe for Stree Design?			No
Lateral Pressure Method		Pressure - Custom	Soil Unit Weight			
Soil Unit Weight	$\gamma_{input} =$	Values $125~{ m pcf}$	Soil Unit Weight		$\gamma =$	$125 \ \mathrm{pcf}$

Author:       Harrison Kliegl         Project:       2000 PSF Retaining Walls         References:       IBC 2018, ASCE 7-16         Stability Summary         Total Sliding Forces $F_{sliding} = 3.78 \text{ kip/ft}$	$\overline{}$
ONE TWENTY° ENGINEERING & DESIGN     Project:     2000 PSF Retaining Walls     Subject:     13'-0" Max Retaining Wall       References:     IBC 2018, ASCE 7-16     W/SURCHARGE LOADING	
Stability Summary	)}
	72
	$\overline{\mathcal{O}}$
Total Resistance to Sliding $F_{resist}=~2.63~{ m kip/ft}$ IBC 2018, CI 1806.3	
Lateral Force Transmitted to Footing $F_{restraint} = 1.15 ~{ m kip/ft}$	
Total Overturning Moment $M_{overturn} = 18.5 { m  kip \cdot ft/ft}$	
Total Restoring Moment $M_{restore}=~34.8~{ m kip}\cdot{ m ft}/{ m ft}$	
80% Overturning Factor of Safety $FS_{overturn} = 1.88$	
Maximum Bearing Pressure $q_{max}=~1390~{ m psf}$	
70%) Soil Allowable Bearing Capacity $q_a = \ 2000 \ { m psf}$	
Stem Summary	_
Moment Demand of Wall Stem $M_{u,stem}=~23~{ m kip}\cdot{ m ft}/{ m ft}$	
86% Moment Capacity of Wall Stem $\phi M_{n,stem} = 26.8  { m kip} \cdot { m ft}/{ m ft}$	
Shear Demand of Wall Stem $V_{u,stem}=~5.13~{ m kip/ft}$ ACI 318-14, CI 9.4.3	
70%) Shear Capacity of Wall Stem $\phi V_{n,stem}=~7.37~{ m kip/ft}$ ACI 318-14, CI 22.5	
Heel Summary	
Moment Demand of Heel $M_{u,heel}=2.54~{ m kip}\cdot{ m ft}/{ m ft}$	
10%Moment Capacity of Heel $\phi M_{n,heel} = 24.3 \text{ kip} \cdot \text{ft}/\text{ft}$ ACI 318-14, CI 22.3	
Shear Demand of Heel $V_{u,heel} = 3.39  ext{ kip/ft}$ ACI 318-14, CI 9.4.3	
35%) Shear Capacity of Wall Base $\phi V_{n,heel} = 9.68  ext{ kip/ft}$	
Toe Summary	_
Moment Demand of Toe $M_{u,toe} = 25.1 \text{ kip} \cdot \text{ft}/\text{ft}$ ACI 318-14, CI 13.2.7.1	
90% Moment Capacity of Toe $\phi M_{n,toe} = 27.8 \text{ kip} \cdot \text{ft}/\text{ft}$ ACI 318-14, CI 22.3	
Shear Demand of Toe $V_{u,toe} = 6.88 \text{ kip/ft}$ ACI 318-14, CI 9.4.3	
72%) Shear Capacity of Toe $\phi V_{n,toe} = 9.62  { m kip/ft}$	

S

- Concrete Wall - Soil Cover - Backfill

**Base Soil Cohesion** 



 $c_{base} = 0 \; {
m psf}$ 

If presumptive values are used: IBC 2018 Table 1806.2

	Water Table		
Height of Water Table	$h_{water} = \ 0 \ { m ft}$		
Unit Weight of Water	$\gamma_{water}=~62.4~{ m pcf}$		
	Concrete Properties		
Concrete Strength	$f_c^\prime = \; 2500 \; { m psi}$	ACI 318-14 Table 19.2.1.1	
Concrete Weight Classification	Normalweight	ACI 318-14, CI 19.2.4.2	
Reinforcement Yield Strength	$f_y=~60000~{ m psi}$	ACI 318-14 Table 20.2.2.4a	
	Stem Reinforcement		
Stem Concrete Cover	$c_{stem}=~1.5$ in	ACI 318-14 Table 20.6.1.3.1	
Main Reinforcement Size	#5		
Main Reinforcement Spacing	$s_{stem}=~4.5$ in	ACI 318-14, Cl 25.2.1 (minimum spacing) and Cl 7.7.2.3 (maximum spacing)	
	Heel Reinforcement (Top Bars)		
Heel Concrete Cover	$c_{heel}=~3$ in	ACI 318-14 Table 20.6.1.3.1	
Heel Reinforcement Size	#4		
Heel Reinforcement Spacing	$s_{heel}=~4.5~{ m in}$	ACI 318-14, Cl 25.2.1 (minimum spacing) and Cl 7.7.2.3 (maximum spacing)	
			$\sim$
Include Toe Reinforcement?	Toe Reinforcement (Bottom Bars) Yes		
Toe Concrete Cover	$c_{toe} = 3$ in	ACI 318-14 Table 20.6.1.3.1	
Toe Reinforcement Size	#5		
Toe Reinforcement Spacing	$s_{toe}=~6$ in	ACI 318-14, Cl 25.2.1 (minimum spacing) and Cl 7.7.2.3 (maximum spacing)	
uuuu	uuuu		J
	Shrinkage / Temperature Reinforcement		
Shrinkage/Temperature Reinforcement Size	#4		
Stem Shrinkage/Temperature Bar Spacin	g s $_{\ell,stem}=~10$ in	ACI 318-14, CI 7.7.2.3	
Footing Shrinkage/Temperature Bar	_ ,	ACI 318-14, CI 7.7.2.3 reinforcen	nen
Spacing	$s_{\ell,footing}=~6$ in	ACI 318-14, CI 7.7.2.3	
	Stem Reinforcement Depth & Spacing		
Depth to Stem Reinforcement	$d_{stem}=~8.19$ in		
Area of Vertical Tension Reinforcement	$A_{s,stem}=~0.827~{ m in^2/ft}$		
Heal Death to Delaferra	Heel Reinforcement Depth & Spacing		
Heel Depth to Reinforcement	$d_{heel} = 10.7$ in $A_{heel} = 0.522 \pm 2$ /G	ACI 318-14, Cl 13.3.1.2	
Area of Heel Reinforcement	$A_{s,heel}=~0.533~{ m in^2/ft}$		
	Toe Reinforcement Depth & Spacing		
Toe Depth to Reinforcement	$d_{toe}=~10.7$ in	ACI 318-14, CI 13.3.1.2	
Area of Toe Reinforcement	$A_{s,toe}=~0.62~{ m in^2/ft}$		
	Design Criteria		
Design Code for Load Combinations	code = International Building Code	(IBC) 2018	
Retaining Wall Movement Condition	Active Case (Ka)		
Footing Restrained Against Sliding?	Yes		
Consider Resisting Soil Pressures for			

Consider Soil Above Toe for Stability Checks?	No	
Consider Resisting Pressure from Soil Above Toe for Strength Design?	No	
Sliding Minimum Factor of Safety	$FS_{\min,sliding}$ 1=5	IBC 2018, CI 1807.2.3
Overturning Minimum Factor of Safety	$FS_{\mathrm{min},ovt}=1.5$	IBC 2018, CI 1807.2.3
Unfactoro	d Vartical and Harizantal Loads for Stability Das	ize

#### Unfactored Vertical and Horizontal Loads for Stability Design

Backfill Soil Width	$w_s=~1~{ m ft}$ , $6~{ m in}$	
Weight of Wall Stem	$W_{stem}=~1.73~{ m kip}/{ m ft}$	
Weight of Heel	$W_{heel}=~0.263~{ m kip/ft}$	
Weight of Toe	$W_{toe}=~0.992~{ m kip/ft}$	
Weight of Backfill Soil	$W_{bf}=~2.41~{ m kip}/{ m ft}$	
Lateral Force Due to Dead Load Surcharge	$P_D=~0.196~{ m kip/ft}$	
Lateral Force Due to Live Load Surcharge	$P_L=~0.157~{ m kip/ft}$	
Lateral Force Due to Backfill	$P_{bf}=~3.43~{ m kip}/{ m ft}$	
Passive Force of Soil on Footing	$P_{p,footing}=0.321{ m kip/ft}$	IBC 2018, CI 1806.3.3
Passive Force of Soil Above Toe on Stem	$P_{p,stem}=~0.0167~{ m kip/ft}$	
Active Force of Soil on Footing	$P_{a,footing}=0.0374\mathrm{kip/ft}$	IBC 2018, CI 1806.3.3
Active Force of Soil Above Toe on Stem	$P_{a,stem}=~0.00194~{ m kip/ft}$	

### Tabulated Soil Loads

Vertical Loads (Resisting)	$\mathbf{W} =$				
Element	Unfactored Forces $W_{unfactored}$ (kip/ft)	Load Factor $\xi$	Weight $W$ (kip/ft)	Moment Arm $y$ (ft)	Restoring Moment $M_{restore}$ (kip $\cdot$ ft/ft)
Dead Load Surcharge	0.075	1	0.075	7.25	0.544
Wall Stem	1.73	1	1.73	6.09	10.5
Wall Footing	1.4	1	1.4	4	5.6
Soil Cover Above Toe	0.236	1	0.236	2.84	0.67
Backfill Above Water Table	2.41	1	2.41	7.25	17.5

Live Load Surcharge Vertical Loads (Soil  $\mathbf{W}_L =$ 

Bearing)

	Element	Unfactored Forc	es $W_{unfactored}$ (kip/ft)	Load Factor §	Weigh	t $W$ (kip/ft)	Moment Arm $y$ (ft)	Restoring Moment $M_{restore}$ (kip $\cdot$ ft/ft)
	Live Load Surcharge		0.06		1	0.06	7.25	0.435
L	ateral Loads		н	=			IE	C 2018, Cl 1605.2
	Element U	Infactored Forces <i>1</i>	Hunfactored (kip/ft)	oad Factor $\xi$	Lateral Lo	ad $H$ (kip/ft)	Moment Arm $y$ (ft)	Overturning Moment $M_{overturn}$ (kip $\cdot$ ft/ft
D	ead Load Surcharge		0.196	1		0.196	7	1.3
$\mathbf{L}$	ve Load Surcharge		0.157	1		0.157	7	1.
в	ackfill		3.43	1		3.43	4.67	1
F	assive Soil Loads (Resistir	ng Sliding)	Fp	=				
	Eleme	ment Unfactored Passive For		orces $F_{p,unfactor}$	_{ed} (kip/ft)	Load Factor &	ξ Passive Lateral R	esisting Load $F_p$ (kip/ft)
	Soil Against	Toe Face			0.321	0.	6	0.193

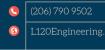
#### Active Soil Loads (Resisting Overturning) ${f Fa}=$

Element	Unfactored Active Forces $F_{a,unfactored}$ (kip/ft)	Load Factor $\xi$	Active Lateral Resisting Load $F_a$ (kip/ft)	Moment Arm $y$ (ft)	Active Resisting Moment $M_a$ (kip $\cdot$ ft/ft)
Soil Against Toe Face	0.0374	0.6	0.0225	0.46	0.0103

### Stability Analysis - Sliding Loads

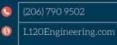
	l Loads (Resis Loads (Resis	-		$_l=~5.85$ ki $_l=~0.193$ (					
Tatal Quarter			1	Analysis - O۱		g Loads			
Total Overtur	-			r = 18.5 ki					
Total Restori	ng woment f	rom Gravity	M _{res,gra}	$_{vv}=34.8$ ki	ıp∙ft/ft				
			Stability A	Analysis - So	il Bearing	Check –			
Eccentricity (I	Live Load Not	t Over Heel)	e	$e=1\mathrm{ft}$ , 2.	5 in				
Eccentricity (I	Live Load Ove	er Heel)	$e_I$	$z_{\rm c}=~1~{ m ft}$ , $2~{ m i}$	in				
Bearing Pres	sures		BP					C 2018, Cl 1605.2	
		Toe	ation	Live Load Not Ov	/er Heel <i>q</i> (psf) 1390		ver Heel q _L (psf) 1380		
			stem face		602		613		
		Stem face	<u>)</u>		454		469		
		Heel			67.6		93.3		
		Unfac	tored Vertica	Loads for S	Structural	Strength [	Design –		
Lateral Force	on Stem Due	ہ e to Dead Loa	Ч			-	1		
Surcharge			$\Gamma_{D,stem}$	$_{n}=~0.18$ ki	lp/It				
Lateral Force Surcharge	on Stem Due	e to Live Load	$P_{L,stem}$	n = 0.144	kip/ft				
Lateral Force	on Stem Due	e to Backfill	$P_{bf,stem}$	$_{n}=~2.88$ ki	ip/ft				
			Structu	ral Strength		anda			
			Structu	i ai su eligu					
Lateral Stem	Loads		SI		i Design E	oaus	IB	C 2018, Cl 1605.2	
Lateral Stem		Unfactored Forces <i>H</i>	I (kip/ft) Load Fa	<u> </u>		oads $H_u$ (kip/ft)	IE Moment Arm	C 2018, Cl 1605.2 y (ft) Stem Momen	nt $M_{u,stem}$ (kip $\cdot$ ft/ft)
	ent	Unfactored Forces E		<u> </u>		1	Moment Arm		nt $M_{u,stem}$ (kip $\cdot$ ft/ft) 1.84
Eleme	Surcharge	Unfactored Forces E	I (kip/ft) Load Fa	s =		oads $H_u$ (kip/ft)	Moment Arm	y (ft) Stem Mome	
Eleme Dead Load	Surcharge	Unfactored Forces <i>E</i>	I (kip/ft) Load Fa	$a =$ actor $\xi$ Factor 1.6		oads $H_u$ (kip/ft) $0.287$	Moment Arm	<i>y</i> (ft) Stem Momen 6.42	1.84
Eleme Dead Load S Live Load S	Surcharge	Unfactored Forces <i>E</i>	I (kip/ft)         Load Fa           0.18         0.144	$a = \frac{1.6}{1.6}$		0.287	Moment Arm	y (ft)         Stem Moment           6.42	1.84 1.48
Eleme Dead Load S Live Load S Backfill Heel Loads	Surcharge		I (kip/ft)         Load Fa           0.18         0.144           2.88         0.144	$a = \frac{1.6}{1.6}$	ed Horizontal L	0.287	Moment Arm	y (ft)         Stem Momen           6.42	1.84 1.48
Eleme Dead Load S Live Load S Backfill Heel Loads	Surcharge		I (kip/ft)         Load Fa           0.18	$a = \frac{1.6}{1.6}$	ed Horizontal L	oads H _u (kip/ft) 0.287 0.25 4.61	Moment Arm	y (ft)         Stem Momen           6.42	1.84 1.48 19.7 ent $M_{u,heel}$ (kip $\cdot$ ft/ft)
Eleme Dead Load S Live Load S Backfill Heel Loads Dead Load S	Element Surcharge		Image: Register of the second secon	$a = $ $1.6$ $1.6$ $1.6$ $1.6$ $a =$ Load Factor $\xi$ $a = $	ed Horizontal L Factored V	0ads $H_u$ (kip/ft) 0.287 0.22 4.61 Neight $W_u$ (kip/ft)	Moment Arm     S     Moment Arm     Moment Arm     S	y (ft)         Stem Momen           6.42	1.84 1.48 19.7 ent $M_{u,heel}$ (kip $\cdot$ ft/ft) 0.0675
Eleme Dead Load S Backfill Heel Loads Dead Load S Live Load S	Element Surcharge Element Surcharge urcharge		Image: Response of the second secon	$a = actor \xi$ Factor f         1.6       1.6         1.6       1.6 $a = bcorr f$ 1.2 $b = corr f$ 1.2 $b = corr f$ 1.6	Factored V 5	oads $H_u$ (kip/ft) 0.287 0.23 4.61 Weight $W_u$ (kip/ft	Moment Arm Moment Arm Moment Ar Moment Ar 9 16	y (ft)         Stem Momen           6.42	1.84 1.48 19.7 ent $M_{u,heel}$ (kip $\cdot$ ft/ft) 0.0675 0.072
Eleme Dead Load S Backfill Heel Loads Dead Load S Live Load S Heel Weight	Element Element Eurcharge t	Unfactore	Item         Load Fill           0.18            0.144            2.88            HII            ed Forces W (kip/ft)            0.075	$a = actor \xi$ Factors         1.6       1.6         1.6       1.6 $a = bcorr f f f f f f f f f f f f f f f f f f $	Factored V 2 2	veight $W_u$ (kip/ft) 0.287 0.25 4.61 Neight $W_u$ (kip/ft) 0.0	Moment Arm Moment Arm Moment Arm Moment Ar 9 16 5	y (ft) Stem Momen 6.42 6.42 4.28 m y (ft) Heel Mome 0.75 0.75	1.84 1.48 19.7 ent $M_{u,heel}$ (kip $\cdot$ ft/ft) 0.0675 0.072 0.236
Eleme Dead Load S Backfill Heel Loads Dead Load S Live Load S Heel Weight	Element Surcharge Lement Surcharge urcharge t bove Water T	Unfactore	I (kip/ft)     Load Fill       0.18     Image: Constraint of the second	$a =$ $actor \xi$ Factors $1.6$ 1.6 $1.6$ 1.6 $a =$ $a =$ Load Factor $\xi$ 1.2 $a =$ 1.2 $a =$ $a =$	Factored V 2 2	0ads $H_u$ (kip/ft) 0.287 0.23 4.61 Neight $W_u$ (kip/ft 0.0 0.09 0.31	Moment Arm Moment Arm Moment Arm Moment Ar 9 16 5	y (ft) Stem Momen 6.42 6.42 4.28 	1.84 1.48 19.7 ent $M_{u,heel}$ (kip $\cdot$ ft/ft) 0.0675 0.072 0.236
Dead Load S Live Load S Backfill Heel Loads Dead Load S Live Load S Heel Weight Backfill Abo	Element Surcharge urcharge t by Water T hear)	Cable Element	Image: Response of the second seco	$a =$ $actor \xi$ Factors $1.6$ 1.6 $1.6$ 1.6 $a =$ $a =$ Load Factor $\xi$ 1.2 $a =$ 1.2 $a =$ $a =$	Factored V Factored V 2 2 2 2 2	oads H _u (kip/ft) 0.287 0.25 4.61 Weight W _u (kip/f 0.0 0.09 0.31 2.8	Moment Arm Moment Arm Moment Arm Moment Ar 9 16 5	y (ft)     Stem Moment       6.42	1.84 1.48 19.7 ent $M_{u,heel}$ (kip $\cdot$ ft/ft) 0.0675 0.072 0.236
Dead Load S Live Load S Backfill Heel Loads Dead Load S Live Load S Heel Weight Backfill Abo	Element Surcharge urcharge t by Water T hear)	Unfactore Table	Image: Response of the second seco	$a = actor \xi$ Factor         1.6       1.6         1.6       1.6 $a = bcorr \xi$ $a = bcorr \xi$ Load Factor $\xi$ $1.2$ $a = bcorr \xi$ $1.2$	Factored V 2 2 2	veight $W_u$ (kip/ft) 0.287 0.23 4.61 Neight $W_u$ (kip/ft 0.0 0.09 0.31 2.8	Moment Arm Moment Arm Moment Ar 99 66 5 99	y (ft)         Stem Momen           6.42         -           6.42         -           4.28         -           m y (ft)         Heel Momen           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -	1.84 1.48 19.7 ent $M_{u,heel}$ (kip $\cdot$ ft/ft) 0.0675 0.072 0.236
Dead Load S Live Load S Backfill Heel Loads Dead Load S Live Load S Heel Weight Backfill Abo	Element Surcharge urcharge t by Water T hear)	Cable Element ds Soil Press	Image: Response of the second seco	$a = actor \xi$ Factor         1.6       1.6         1.6       1.6 $a = bcorr \xi$ $a = bcorr \xi$ Load Factor $\xi$ $1.2$ $a = bcorr \xi$ $1.2$	Factored V Factored V 2 2 2 2 2	oads H _u (kip/ft) 0.287 0.25 4.61 Weight W _u (kip/f 0.0 0.09 0.31 2.8	Moment Arm Moment Arm Moment Ar 99 66 5 99	y (ft)     Stem Moment       6.42	1.84 1.48 19.7 ent $M_{u,heel}$ (kip $\cdot$ ft/ft) 0.0675 0.072 0.236
Dead Load S Live Load S Backfill Heel Loads Dead Load S Live Load S Heel Weight Backfill Abo	ent Surcharge Surcharge Element Surcharge urcharge t bove Water T hear) Upwar Toe W	Cable Element ds Soil Press	Image: Response of the second seco	$a = actor \xi$ Factor         1.6       1.6         1.6       1.6 $a = bcor \xi$ 1.2 $b = cor \xi$ 1.2 $c = cor $	Ed Horizontal L Factored V 2 5 2 2 2 2 2 2 4.77	ا oads $H_u$ (kip/ft) 0.287 0.25 4.61 Neight $W_u$ (kip/f 0.0 0.09 0.31 2.8 .oad Factor $\xi$ 1.6	Moment Arm Moment Arm Moment Ar 99 66 5 99	y (ft) Stem Momen 6.42 6.42 4.28 4.28 	1.84 1.48 19.7 ent $M_{u,heel}$ (kip $\cdot$ ft/ft) 0.0675 0.072 0.236
Eleme Dead Load S Backfill Heel Loads Dead Load S Live Load S Heel Weight Backfill Abo	ent Surcharge	Cable Element ds Soil Press eight	I (kip/ft)     Load Fa       0.18	$a = actor \xi$ Factor         1.6       1.6         1.6       1.6 $a = bcord Factor f g$ 1.2 $b = cord Factor f g$ 1.2 $c = cord factor facto$	ed Horizontal L Factored V 2 5 2 2 V _d (kip/ft)   1 4.777 -0.836 Load Factor ℓ	oads H _u (kip/ft)           0.287           0.287           0.287           0.287           0.287           0.287           0.287           0.287           0.287           0.287           0.287           0.287           0.287           0.287           0.29           :           Moment Ar	Moment Arm       7       8       10       11       12       13       14       15       16       17       18         19         16         17         18         19         10         10         11         12         13         14         15         15         16         17         18         19         10         10         11         12         13         14         15         15         16         16         17         18         19         10         10         11         12         13         14         15         15         16         1	y (ft)         Stem Moment           6.42         -           6.42         -           6.42         -           4.28         -           4.28         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.753         -           -         -           1000000000000000000000000000000000000	1.84 1.48 19.7 ent <i>M_{u,heel}</i> (kip · ft/ft) 0.0675 0.072 0.236 2.17
Eleme Dead Load S Backfill Heel Loads Dead Load S Live Load S Heel Weight Backfill Abo	ent Surcharge	Cable Element ds Soil Press feight ment foil Pressure	f (kip/ft) Load Fa 0.18 0.144 2.88 CHI 2.88 CH	a = $1.6$ $1.6$ $1.6$ $1.6$ $1.6$ $1.6$ $1.6$ $1.6$ $1.6$ $1.6$ $1.6$ $1.6$ $1.6$ $1.6$ $1.6$ $1.6$ $1.6$ $1.2$ $5$ $1.2$ $6$ $1.2$ $6$ $1.2$ $6$ $1.2$ $6$ $1.2$ $6$ $1.2$ $7 =$ $6$ $6$ $6$ $6$ $7 =$ $6$ $6$ $6$ $7 =$ $6$ $7 =$ $7 =$ $7 =$ $7 =$ $7 =$ $7 =$ $7 =$ $7 =$ $7 =$	ed Horizontal L Factored V 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	oads H _u (kip/ft)           0.287           0.2287           0.2287           0.2287           0.2287           0.287           0.287           0.287           0.287           0.287           0.287           0.287           0.287           0.287           0.29           ∴           Moment Ar           6	Moment Arm       7       8       (a)       9       96       5       99   Factored Shear I	y (ft)     Stem Moment       6.42     -       6.42     -       6.42     -       4.28     -       m y (ft)     Heel Moment       0.75     -       0.75     -       0.75     -       0.75     -       0.75     -       0.75     -       0.75     -	1.84 1.48 19.7 ent <i>M_{u,heel}</i> (kip · ft/ft) 0.0675 0.072 0.236 2.17
Eleme Dead Load S Backfill Heel Loads Dead Load S Live Load S Heel Weight Backfill Abo	ent Surcharge	Cable Element ds Soil Press eight doil Pressure	f (kip/ft) Load Fa 0.18 0.144 2.88 CHI 2.88 CH	$a = actor \xi$ Factor         1.6       1.6         1.6       1.6 $a = bcord Factor f g$ 1.2 $b = cord Factor f g$ 1.2 $c = cord factor facto$	ed Horizontal L Factored V 2 5 2 2 V _d (kip/ft)   1 4.777 -0.836 Load Factor ℓ	oads H _u (kip/ft)           0.287           0.2287           0.2287           0.2287           0.2287           0.287           0.287           0.287           0.287           0.287           0.287           0.287           0.287           0.287           0.29           ∴           Moment Ar           6	Moment Arm       7       8       10       11       12       13       14       15       16       17       18         19         16         17         18         19         10         10         11         12         13         14         15         15         16         17         18         19         10         10         11         12         13         14         15         15         16         16         17         18         19         10         10         11         12         13         14         15         15         16         1	y (ft)         Stem Moment           6.42         -           6.42         -           6.42         -           4.28         -           4.28         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.75         -           0.753         -           -         -           1000000000000000000000000000000000000	1.84 1.48 19.7 ent <i>M_{u,heel}</i> (kip · ft/ft) 0.0675 0.072 0.236 2.17

Tension Reinforcement Strain


 $arepsilon_t = ~0.00773$ 

$\phi M_n = 26800\mathrm{lb\cdot ft/ft}$ seel Flexural Analysis (ACI 318-14, Cl 22) $arepsilon_t = 0.0188$ $\phi_b = 0.9$ $\phi M_{n,heel} = 24300\mathrm{lb\cdot ft/ft}$ see Flexural Analysis (ACI 318-14, Cl 22) $arepsilon_t = 0.0157$	ACI 318-14, CI 22.2.2.4.1 and CI 7.3.3.1 for strain lir ACI 318-14. Table 21.2.2 ACI 318-14, 8.5.1.1a
$arepsilon_t=~0.0188$ $\phi_b=~0.9$ $\phi M_{n,heel}=~24300~{ m lb\cdot ft/ft}$ De Flexural Analysis (ACI 318-14, Cl 22) $arepsilon_t=~0.0157$	ACI 318-14, CI 22.2.2.4.1 and CI 7.3.3.1 for strain lir ACI 318-14. Table 21.2.2 ACI 318-14, 8.5.1.1a
$\phi_b=~0.9$ $\phi M_{n,heel}=~24300~{ m lb\cdot ft/ft}$ pe Flexural Analysis (ACI 318-14, Cl 22 $arepsilon_t=~0.0157$	ACI 318-14, Table 21.2.2 ACI 318-14, 8.5.1.1a
$\phi M_{n,heel}=24300~{ m lb\cdot ft/ft}$ pe Flexural Analysis (ACI 318-14, Cl 22 $arepsilon_t=0.0157$	ACI 318-14, 8.5.1.1a
be Flexural Analysis (ACI 318-14, Cl 22 $arepsilon_t=~0.0157$	2.2)
$arepsilon_t=~0.0157$	I
·	
	ACI 318-14, Cl 22.2.2.4.1 and Cl 7.3.3.1 for strain lir
$\phi_b=~0.9$	ACI 318-14. Table 21.2.1
$\phi M_{n,toe}=~27800~{ m lb}\cdot{ m ft/ft}$	ACI 318-14, 8.5.1.1a
Shear in Stem (ACI 318-14, Cl 22.5)	
$\phi_v=~0.75$	ACI 318-14 Table 21.2.1
$\phi V_{n,stem}=~7370~{ m plf}$	ACI 318-14, CI 22.5.5
Shear in Heel (ACI 318-14, Cl 22.5)	
$\phi V_{n,base}=~9670~{ m plf}$	ACI 318-14, CI 22.5.5
Shear in Toe (ACI 318-14, Cl 22.5)	
$\phi_{v,toe}=~0.75$	ACI 318-14 Table 21.2.1
$\phi V_{n,toe}=~9620~{ m plf}$	ACI 318-14, CI 22.5.5
	Shear in Stem (ACI 318-14, CI 22.5) $\phi_v = 0.75$ $\phi V_{n,stem} = 7370 \text{ plf}$ Shear in Heel (ACI 318-14, CI 22.5) $\phi V_{n,base} = 9670 \text{ plf}$ Shear in Toe (ACI 318-14, CI 22.5) $\phi_{v,toe} = 0.75$




Supplementary Calculations for the following:

- ~ Hold-down anchor design/calculations
- ~ Hand-rail calculations (wood/concrete)
- ~ Balloon framed stud design
- ~ Ledger Calculations/Data
- Typical Posts





# Hold-down anchor design calculations



## SIMPSON

Strong-1

Anchor Designer™ Software Version 2.5.6582.0

JUCI	Engineer:	MRT
	Project:	Hold-down Anchors
	Address:	
	Phone:	

Company:

E-mail:

#### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

#### 2. Input Data & Anchor Parameters

**General** Design method:ACI 318-14 Units: Imperial units

#### Anchor Information:

 $\begin{array}{l} \mbox{Anchor type: Cast-in-place} \\ \mbox{Material: AB_H} \\ \mbox{Diameter (inch): 0.625} \\ \mbox{Effective Embedment depth, $h_{ef}$ (inch): 4.000} \\ \mbox{Anchor category: -} \\ \mbox{Anchor ductility: Yes} \\ \mbox{h_{min}$ (inch): 6.13} \\ \mbox{Cmin (inch): 1.38} \\ \mbox{S_{min}$ (inch): 2.50} \end{array}$ 

#### Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0E Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable  $\Omega_0$  factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

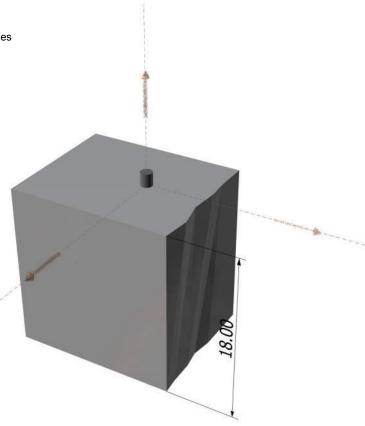
<Figure 1>

#### Project description: Location: Fastening description:

# 5/8" DIA Anchor

Date:

Page:


5/3/2018

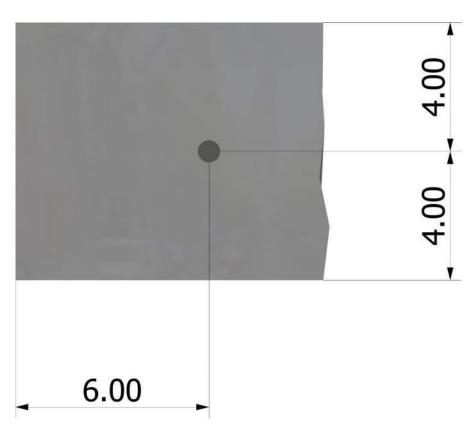
1/4

#### Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength,  $f_c$  (psi): 2500  $\Psi_{c,V}$ : 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No

L120 Engineering & Design




SEE ID

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com



Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	2/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>



#### **Recommended Anchor**

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB5H (5/8"Ø)



SON Anchor Designer™	Company:	L120 Engineering & Design	Date:	5/3/2018
	Engineer:	MRT	Page:	3/4
g-Tie Software	Project:	Hold-down Anchors		
Version 2.5.6582.0	Address:			
•	Phone:			
	E-mail:			

#### **3. Resulting Anchor Forces**

1010

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2925.0	0.0	0.0	0.0
Sum	2925.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 2925

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

#### 4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	$\phi$	$\phi N_{sa}$ (lb)
27120	0.75	20340

#### 5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

Kc	λa	f'c (psi)	h _{ef} (in)	N _b (lb)				
24.0	1.00	2500	4.000	9600				
$0.75\phi N_{cb} =$	0.75 <i>ф</i> (А _{Nc} / А _{Nco}	) $\Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N$	l _b (Sec. 17.3.1	& Eq. 17.4.2.1a	)			
$A_{Nc}$ (in ² )	$A_{Nco}$ (in ²	c _{a,min} (in)	$\Psi_{ed,N}$	Ψc,N	$\Psi_{cp,N}$	N _b (lb)	$\phi$	0.75 <i>¢Ncb</i> (lb)
ANC (III-)								

#### 6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

$\Psi_{c,P}$	Abrg (in ² )	f'c (psi)	$\phi$	0.75 <i>¢Npn</i> (lb)
1.0	2.10	2500	0.70	22029



Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	4/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 11. Results

#### 11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2925	20340	0.14	Pass
Concrete breakout	2925	3476	0.84	Pass (Governs)
Pullout	2925	22029	0.13	Pass

#### PAB5H (5/8"Ø) with hef = 4.000 inch meets the selected design criteria.

#### ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, Nua (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio		
Steel	2925	32544	9.0 %		
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio		
Concrete breakout	2925	6180	47.3 %	Governs	
Pullout	2925	41960	7.0 %		

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

#### 12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively,  $\Omega$ 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

## SIMPSON

Strong-1

Anchor Designer™ Software Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

#### 2. Input Data & Anchor Parameters

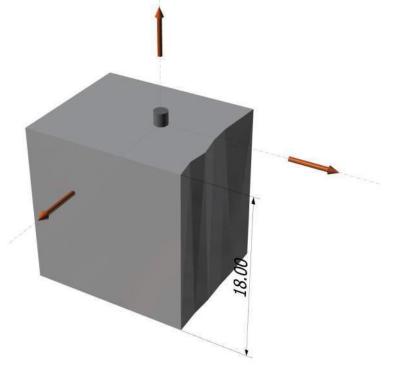
**General** Design method:ACI 318-14 Units: Imperial units

#### Anchor Information:

Anchor type: Cast-in-place Material: AB Diameter (inch): 0.750 Effective Embedment depth,  $h_{ef}$  (inch): 12.000 Anchor category: -Anchor ductility: Yes  $h_{min}$  (inch): 14.25  $C_{min}$  (inch): 1.63  $S_{min}$  (inch): 3.00

#### Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0ESeismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable  $\Omega_0$  factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes


<Figure 1>

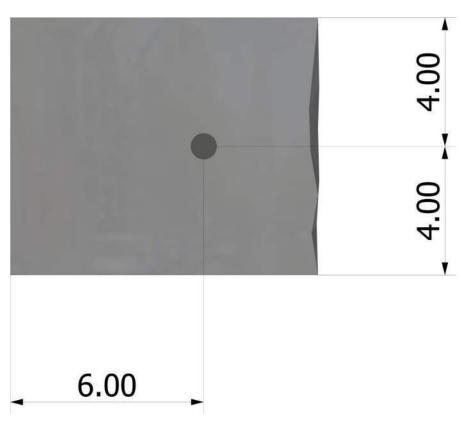
#### Project description: Location: Fastening description:

# 3/4" DIA Anchor

#### Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f^{*}_c (psi): 2500  $\Psi_{c,V}$ : 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No






Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com



Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>



#### **Recommended Anchor**

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB6 (3/4"Ø)



PSON	Anchor Docignor TM	Company:	L120 Engineering & Design	Date:	1/14/2018
	SON Anchor Designer™ Software Version 2.5.6582.0	Engineer:	MRT	Page:	3/4
ng-Tie		Project:	Hold-down Anchors		
R		Address:			
		Phone:			
		E-mail:			

#### **3. Resulting Anchor Forces**

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	13050.0	0.0	0.0	0.0
Sum	13050.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

#### 4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	$\phi$	$\phi N_{sa}$ (lb)
19370	0.75	14528

#### 6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75 \phi N_{Pn} = 0.75 \phi \Psi_{c,P} N_P = 0.75 \phi \Psi_{c,P} 8 A_{brg} f_c$  (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

$\Psi_{c,P}$	A _{brg} (in ² )	f'c (psi)	$\phi$	0.75 <i>øNpn</i> (lb)
1.0	3.53	2500	0.70	37107

## SIMPSON Strong-Tie Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	4/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{(1+c_{a2}/c_{a1})/4\}(160c_{a1}\sqrt{A_{brg}})\lambda\sqrt{f_c}$  (Sec. 17.3.1 & Eq. 17.4.4.1)

<i>c</i> a1 (in)	<i>c</i> _{a2} (in)	A _{brg} (in ² )	λa	f′c (psi)	$\phi$	$0.75\phi N_{sbg}$ (lb)
4.00	6.00	3.53	1.00	2500	0.75	21149

#### 11. Results

#### 11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	13050	14528	0.90	Pass (Governs)
Pullout	13050	37107	0.35	Pass
Side-face blowout	13050	21149	0.62	Pass

#### PAB6 (3/4"Ø) with hef = 12.000 inch meets the selected design criteria.

#### ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, N _{ua} (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio		
Steel	13050	23244	56.1%	Governs	
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio		
Pullout	13050	70680	18.5%		
, and at					

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) satisfied since steel ratio governs and the steel element is ductile.

#### 12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

## SIMPSON

Strong-1

Anchor Designer™ Software

Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

#### 2. Input Data & Anchor Parameters

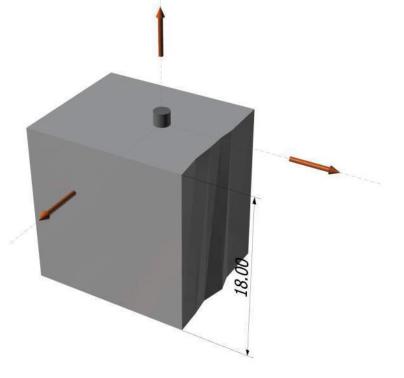
General Design method:ACI 318-14 Units: Imperial units

#### Anchor Information:

Anchor type: Cast-in-place Material: AB H Diameter (inch): 0.875 Effective Embedment depth, hef (inch): 12.000 Anchor category: -Anchor ductility: Yes h_{min} (inch): 14.38 Cmin (inch): 1.75 Smin (inch): 3.50

#### Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0E Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable  $\Omega_0$  factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes


<Figure 1>

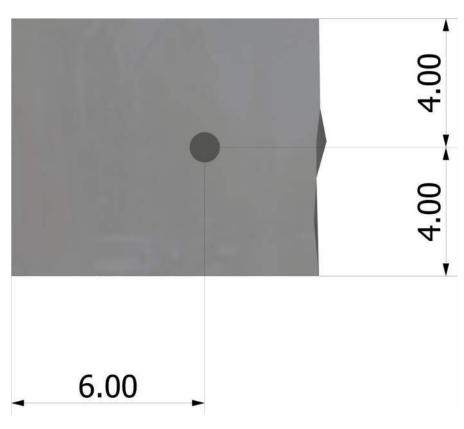
Project description: Location: Fastening description:

# 7/8" DIA Anchor

#### **Base Material**

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f'c (psi): 2500 Ψ_{c,V}: 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No




8008

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com



Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>



#### **Recommended Anchor**

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB7H (7/8"Ø)



PSON	Anchor Docignor TM	Company:	L120 Engineering & Design	Date:	1/14/2018
	Anchor Designer™ Software	Engineer:	MRT	Page:	3/5
ng-Tie		Project:	Hold-down Anchors		
Version 2.5.6582.0	Version 2.5.6582.0	Address:			
•		Phone:			
		E-mail:			

#### **3. Resulting Anchor Forces**

31

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	18000.0	0.0	0.0	0.0
Sum	18000.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis,  $e'_{Nx}$  (inch): 0.00

Eccentricity of resultant tension forces in x-axis,  $e_{Ny}$  (incl.). 0.00 Eccentricity of resultant tension forces in y-axis,  $e_{Ny}$  (incl.). 0.00

#### 4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	$\phi$	$\phi N_{sa}$ (Ib)
55440	0.75	41580

#### 6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75 \phi N_{Pn} = 0.75 \phi \Psi_{c,P} N_P = 0.75 \phi \Psi_{c,P} 8 A_{brg} f_c$  (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

Ψc,P	A _{brg} (in ² )	f'c (psi)	$\phi$	0.75 <i>¢N_{pn}</i> (lb)
1.0	4.07	2500	0.70	42683

# SIMPSONAnchor Designer™Company:<br/>Engineer:Strong:TieSoftware<br/>Version 2.5.6582.0Project:<br/>Address:

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	4/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{ (1 + c_{a2}/c_{a1})/4 \} (160c_{a1}\sqrt{A_{brg}}) \lambda \sqrt{f_c} \text{ (Sec. 17.3.1 \& Eq. 17.4.4.1)}$ 

<b>C</b> a1 (in)	<i>c</i> _{a2} (in)	$A_{brg}$ (in ² )	λa	f'₀ (psi)	$\phi$	0.75 <i>¢N_{sbg}</i> (lb)
4.00	6.00	4.07	1.00	2500	0.75	22682

#### 11. Results

#### 11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	18000	41580	0.43	Pass
Pullout	18000	42683	0.42	Pass
Side-face blowout	18000	22682	0.79	Pass (Governs)

PAB7H (7/8"Ø) with hef = 12.000 inch meets the selected design criteria.

#### ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, N _{ua} (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio	
Steel	18000	66528	27.1%	
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio	
Pullout	18000	81300	22.1%	
Side-face blowout	18000	40324	44.6%	Governs

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.



Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	5/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively,  $\Omega$ 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

## SIMPSON

Strong-1

Anchor Designer™ Software

Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

#### 2. Input Data & Anchor Parameters

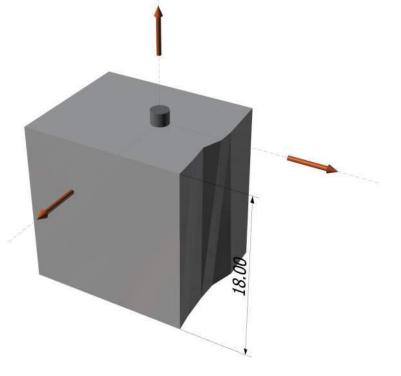
**General** Design method:ACI 318-14 Units: Imperial units

#### Anchor Information:

Anchor type: Cast-in-place Material: AB_H Diameter (inch): 1.000 Effective Embedment depth,  $h_{ef}$  (inch): 15.000 Anchor category: -Anchor ductility: Yes  $h_{min}$  (inch): 17.63  $C_{min}$  (inch): 1.88  $S_{min}$  (inch): 4.00

#### Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0ESeismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable  $\Omega_0$  factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes


<Figure 1>

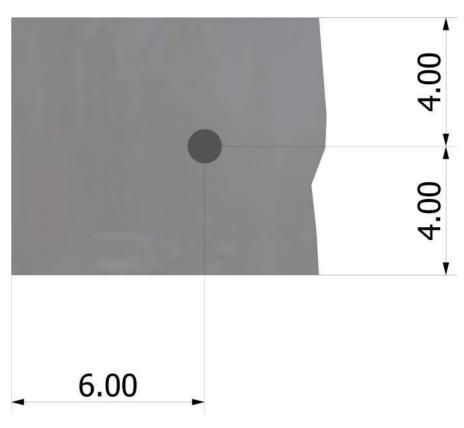
Project description: Location: Fastening description:

1" DIA Anchor

#### Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f^c (psi): 2500  $\Psi_{c,V}$ : 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No




2000 lb

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com



Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>



#### **Recommended Anchor**

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB8H (1"Ø)



PSON	Anchor Designer™	Company:	L120 Engineering & Design	Date:	1/14/2018
		Engineer:	MRT	Page:	3/5
ng-Tie	PTie Software	Project:	Hold-down Anchors		
Version 2.5.6582.0	Address:				
•		Phone:			
		E-mail:			

#### **3. Resulting Anchor Forces**

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	22500.0	0.0	0.0	0.0
Sum	22500.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

#### 4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	$\phi$	$\phi N_{sa}$ (lb)
72720	0.75	54540

#### 6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75 \phi N_{Pn} = 0.75 \phi \Psi_{c,P} N_P = 0.75 \phi \Psi_{c,P} 8 A_{brg} f_c$  (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

$\Psi_{c,P}$	A _{brg} (in ² )	f' _c (psi)	$\phi$	0.75 <i>¢N_{pn}</i> (lb)
1.0	5.15	2500	0.70	54117

# SIMPSONAnchor Designer™C.Strong-TieSoftwarePrVersion 2.5.6582.0Ad

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	4/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{(1+c_{a2}/c_{a1})/4\}(160c_{a1}\sqrt{A_{brg}})\lambda\sqrt{f'_c}$  (Sec. 17.3.1 & Eq. 17.4.4.1)

<i>c</i> a1 (in)	<b>C</b> a2 (in)	A _{brg} (in ² )	λa	f'₀ (psi)	$\phi$	0.75 <i>¢N_{sbg}</i> (lb)
4.00	6.00	5.15	1.00	2500	0.75	25540

#### 11. Results

#### 11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	22500	54540	0.41	Pass
Pullout	22500	54117	0.42	Pass
Side-face blowout	22500	25540	0.88	Pass (Governs)

PAB8H (1"Ø) with hef = 15.000 inch meets the selected design criteria.

#### ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, Nua (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio	
Steel	22500	87264	25.8%	
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio	
Pullout	22500	103080	21.8%	
Side-face blowout	22500	45405	49.6%	Governs

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.



Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	5/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively,  $\Omega$ 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

Strong-I

Anchor Designer™ Software Ve

151011 2.3.0302.0	rsion	2.5.6582.0	
-------------------	-------	------------	--

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

#### 2. Input Data & Anchor Parameters

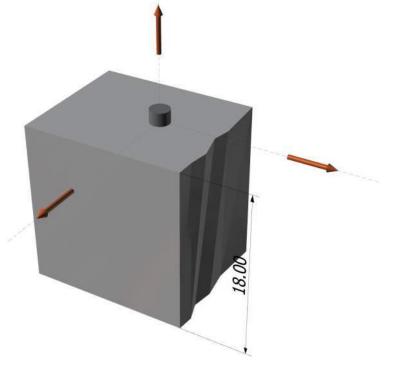
General Design method:ACI 318-14 Units: Imperial units

#### Anchor Information:

Anchor type: Cast-in-place Material: AB Diameter (inch): 1.125 Effective Embedment depth, hef (inch): 15.000 Anchor category: -Anchor ductility: Yes hmin (inch): 17.75 Cmin (inch): 2.13 Smin (inch): 4.50

#### Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0E Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable  $\Omega_0$  factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes


<Figure 1>

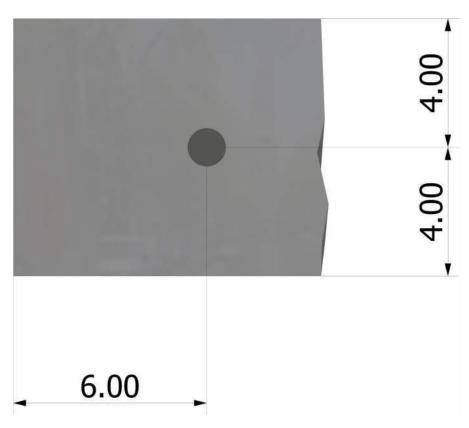
#### Project description: Location: Fastening description:

# 1 1/8" DIA Anchor

#### **Base Material**

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f'c (psi): 2500 Ψ_{c,V}: 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No






Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com



Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>



#### **Recommended Anchor**

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB9 (1 1/8"Ø)



PSON	Anchor Docignor™	Company:	L120 Engineering & Design	Date:	1/14/2018
	Anchor Designer™	Engineer:	MRT	Page:	3/5
ng-Tie Software Version 2.5.6582.0	Project:	Hold-down Anchors			
	Address:				
•		Phone:			
		E-mail:			

#### **3. Resulting Anchor Forces**

31

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	27900.0	0.0	0.0	0.0
Sum	27900.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis,  $e'_{Nx}$  (inch): 0.00

Eccentricity of resultant tension forces in y-axis,  $e_{Ny}$  (inch): 0.00 Eccentricity of resultant tension forces in y-axis,  $e_{Ny}$  (inch): 0.00

#### 4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	$\phi$	$\phi N_{sa}$ (lb)
44255	0.75	33191

#### 6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75 \phi N_{Pn} = 0.75 \phi \Psi_{c,P} N_P = 0.75 \phi \Psi_{c,P} 8 A_{brg} f_c$  (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

Ψc,P	A _{brg} (in ² )	f' _c (psi)	$\phi$	0.75 <i>¢N_{pn}</i> (lb)
1.0	6.37	2500	0.70	66885

PSON Anchor Designer™	Company:	L120 Engineering & Design
	Engineer:	MRT
ng-Tie Software	Project:	Hold-down Anchors
Version 2.5.6582.0	Address:	
~	Phone:	

E-mail:

Date:

Page:

1/14/2018

4/5

#### 7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{(1+c_{a2}/c_{a1})/4\}(160c_{a1}\sqrt{A_{brg}})\lambda\sqrt{f'_c}$  (Sec. 17.3.1 & Eq. 17.4.4.1)

<i>c</i> a1 (in)	<b>C</b> a2 (in)	A _{brg} (in ² )	λa	f′c (psi)	$\phi$	0.75 <i>¢N_{sbg}</i> (lb)
4.00	6.00	6.37	1.00	2500	0.75	28394

#### 11. Results

#### 11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	27900	33191	0.84	Pass
Pullout	27900	66885	0.42	Pass
Side-face blowout	27900	28394	0.98	Pass (Governs)

PAB9 (1 1/8"Ø) with hef = 15.000 inch meets the selected design criteria.

#### ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, N _{ua} (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio	
Steel	27900	53106	52.5%	
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio	
Pullout	27900	127400	21.9%	
Side-face blowout	27900	50478	55.3%	Governs

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.



Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	5/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively,  $\Omega$ 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

## SIMPSON

Strong-1

Anchor Designer™ Software

Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

#### 2. Input Data & Anchor Parameters

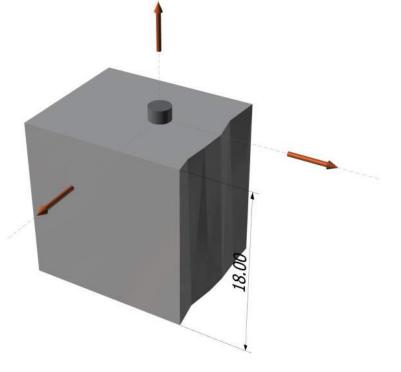
General Design method:ACI 318-14 Units: Imperial units

#### Anchor Information:

Anchor type: Cast-in-place Material: AB Diameter (inch): 1.250 Effective Embedment depth, hef (inch): 15.000 Anchor category: -Anchor ductility: Yes h_{min} (inch): 18.00 Cmin (inch): 2.25 Smin (inch): 5.00

#### Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0E Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable  $\Omega_0$  factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes


<Figure 1>

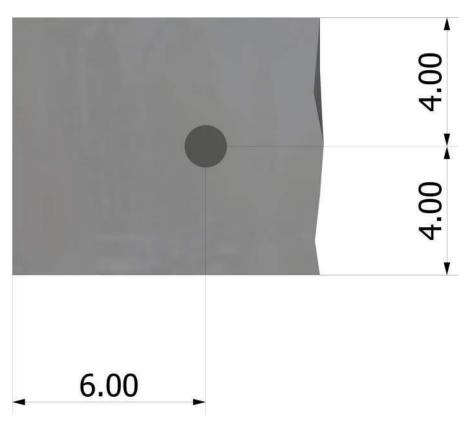
Project description: Location: Fastening description:

# 1 1/4" DIA Anchor

#### **Base Material**

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f'c (psi): 2500 Ψ_{c,V}: 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No




10001

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com



Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>



#### **Recommended Anchor**

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB10 (1 1/4"Ø)



PSON	Anchor Designer™	Company:	L120 Engineering & Design	Date:	1/14/2018
Con		Engineer:	MRT	Page:	3/5
ng-Tie	Version 2.5.6582.0	Project:	Hold-down Anchors		
		Address:			
0		Phone:			
		E-mail:			

#### **3. Resulting Anchor Forces**

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	31500.0	0.0	0.0	0.0
Sum	31500.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

#### 4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	$\phi$	$\phi N_{sa}$ (lb)
56200	0.75	42150

#### 6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75 \phi N_{Pn} = 0.75 \phi \Psi_{c,P} N_P = 0.75 \phi \Psi_{c,P} 8 A_{brg} f_c$  (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

Ψc,P	A _{brg} (in ² )	f'c (psi)	$\phi$	0.75 <i>¢N_{pn}</i> (lb)
1.0	8.39	2500	0.70	88137

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	4/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{(1+c_{a2}/c_{a1})/4\}(160c_{a1}\sqrt{A_{brg}})\lambda\sqrt{f'_c}$  (Sec. 17.3.1 & Eq. 17.4.4.1)

<i>c</i> a1 (in)	<i>c</i> _{a2} (in)	$A_{brg}$ (in ² )	λa	f′c (psi)	$\phi$	0.75 <i>¢N_{sbg}</i> (lb)
4.00	6.00	8.39	1.00	2500	0.75	32594

#### 11. Results

#### 11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	31500	42150	0.75	Pass
Pullout	31500	88137	0.36	Pass
Side-face blowout	31500	32594	0.97	Pass (Governs)

PAB10 (1 1/4"Ø) with hef = 15.000 inch meets the selected design criteria.

#### ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, N _{ua} (Ib)	1.2 x Nominal Strength, Nn (lb)	Ratio		
Steel	31500	67440	46.7%		
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio		
Pullout	31500	167880	18.8%		
Side-face blowout	31500	57945	54.4%	Governs	

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.



Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	5/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

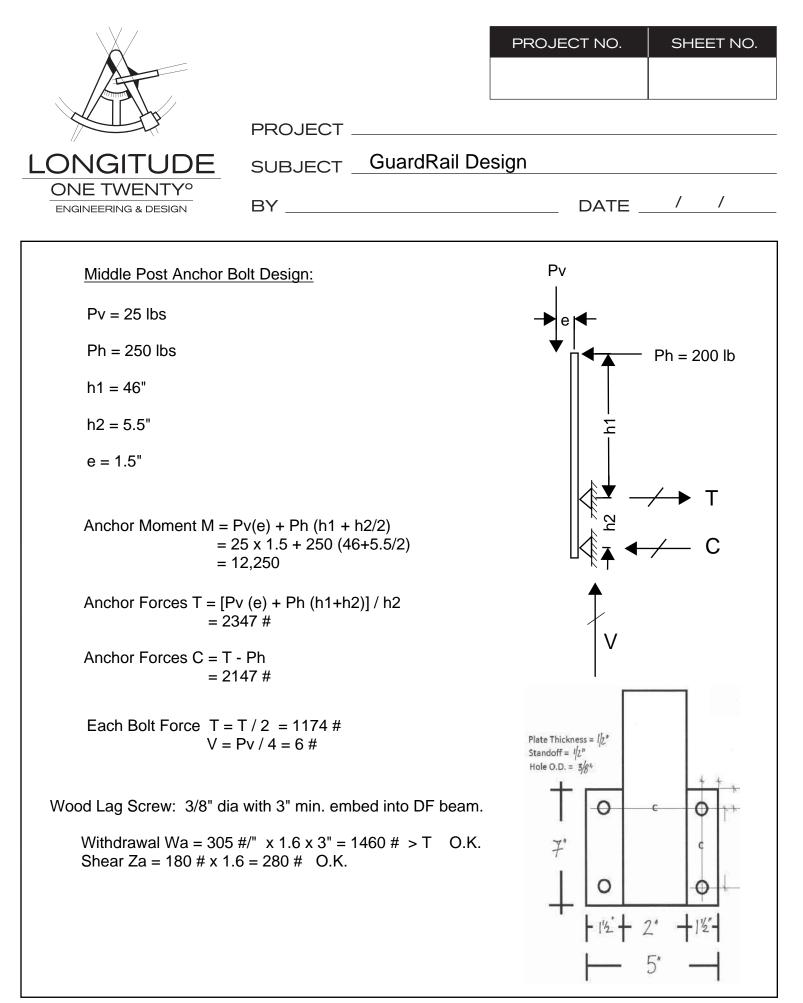
#### 12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively,  $\Omega$ 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.

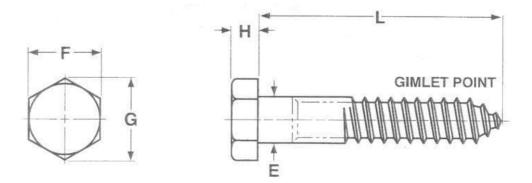
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.


- Designer must exercise own judgement to determine if this design is suitable.



# Hand-rail Calculations




LONGITUDE ONE TWENTY° ENGINEERING & DESIGN	PROJECT SUBJECTGuardRail D BY	PROJECT NO.       SHEET NO.
= 97 My = 20 Anchor Forces T = [Pv = 248 Anchor Forces C = T - F = 228 Each Bolt Force T = T V = Pv Wood Lag Screw: 3/8" dia v	v(e) + Ph (h1 + h2/2) 5 x 1.5 + 200x (46+5.5/2) 788 #" 0# x 4.5" = 900 #" (e) + Ph (h1+h2)] / h2 + My/1.5" 0 # Ph 0 #	Pv Ph = 200 lb Ph = 200 lb Ph = $C$ Ph =
Shear Za = 180 # x 1.6	= 280 #   O.K.	$\begin{array}{c c} & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet \\ \hline & & 5' & -+ & 2'' & -1 \\ \hline & & & 7'' & -1 \end{array}$



LONGITUDE	PROJECT SUBJECTGuardRai	
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _/ /
Mounting Plate Design: Apply Forces: $Mx = 9788$ $My = 900 \pi$ T = 200 # V = 25 #	; #" #"	Plate Thickness = $1/2$ . Standoff = $1/2$ . Hole O.D. = $3/g^{*}$ $\uparrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$
= fby	= Mx/2/Sx = 9788/2/(1/4 x 5" x (1/2)^2) = 15,660 psi = My/Sy = 900/(1/4 x 7" x (1/2)^2) = 2,057 psi	$\begin{array}{c c} \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \hline \hline \end{array} & 5' & \longrightarrow 2'' & - \\ \hline \hline \end{array} & 7'' & - \end{array}$
For Plate 6061-T6 Fb =3 = 2	5 ksi / 1.65 21,200 psi > fb   O.K.	
Plate Combined Stress fbx/Fb + fby/Fb = 0.83 <	1.0 O.K.	

Page 1 of 1	Fastenal Product Standard	REV-00
Date: January 11, 2012	FASTENAL	LAG.HDG

Hex Lag Screws, Hot Dipped Galvanized The information below lists the required dimensional, chemical and physical characteristics of the products in this purchase order. If the order received does not meet these requirements, it may result in a supplier corrective action request, which could jeopardize your status as an approved vendor. Unless otherwise specified, all referenced consensus standards must be adhered to in their entirety.



	E	Ξ	F	-	(	G	F	1
Diameter	Body D	iameter	Width Ac	ross Flats		Across ners	Hei	ght
	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.
10	.199	.178	.281	.271	.323	.309	.140	.110
1/4	.260	.237	.438	.425	.505	.484	.188	.150
5/16	.324	.298	.500	.484	.577	.552	.235	.195
3/8	.388	.360	.562	.544	.650	.620	.268	.226
7/16	.452	.421	.625	.603	.722	.687	.316	.272
1/2	.515	.482	.750	.725	.866	.826	.364	.302
5/8	.642	.605	.938	.906	1.083	1.033	.444	.378
3/4	.768	.729	1.125	1.088	1.299	1.240	.524	.455
7/8	.895	.852	1.312	1.269	1.516	1.447	.604	.531
1	1.022	.976	1.500	1.450	1.732	1.653	.700	.591
1 1/8	1.149	1.098	1.688	1.631	1.949	1.859	.780	.658
1 1/4	1.277	1.223	1.875	1.812	2.165	2.066	.876	.749

Dimensions above are prior to coating

**Specification Requirements:** 

Dimensions:	ASME B18.2.1.
Material:	Per ASTM A307, Grade A
Thread requirements:	The minimum thread length must be equal to one half the nominal Screw length plus $\frac{1}{2}$ , or 6 inch, whichever is shorter. Screws too
	short to conform to this formula must be threaded as close to the head as possible.
Coating:	Hot Dip Zinc per ASTM F2329 or in accordance with Class C of ASTM A153 and Class D for 3/8" diameter and less.
	Material: Thread requirements:

		PROJECT NO.	SHEET NO.
	PROJECT _		
LONGITUDE	SUBJECT _		
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /

Table 2.3.2	Frequently Used Load Duration Factors, Cp1					
Load Duration	Cp	Typical Design Loads				
Permanent	0.9	Dead Load				

Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

1. Load duration factors shall not apply to reference modulus of elasticity, E, reference modulus of elasticity for beam and column stability,  $E_{\rm man}$ , no to reference compression perpendicular to grain design values,  $F_{\perp}$ , based on a deformation limit.

 Load duration factors greater than 1.6 shall not apply to structural members pressure-treated with water-borne preservatives (see Reference 30), or fire retardant chemicals. The impact load duration factor shall not apply to connections.

#### 2.3.3 Temperature Factor, Ct

Reference design values shall be multiplied by the temperature factors,  $C_t$ , in Table 2.3.3 for structural members that will experience sustained exposure to elevated temperatures up to 150°F (see Appendix C).

#### 2.3.4 Fire Retardant Treatment

The effects of fire retardant chemical treatment on strength shall be accounted for in the design. Adjusted design values, including adjusted connection design values, for lumber and structural glued laminated timber pressure-treated with fire retardant chemicals shall be obtained from the company providing the treatment and redrying service. Load duration factors greater than 1.6 shall not apply to structural members pressure-treated with fire retardant chemicals (see Table 2.3.2).

#### 2.3.5 Format Conversion Factor, K_F (LRFD Only)

For LRFD, reference design values shall be multiplied by the format conversion factor,  $K_F$ , specified in Table 2.3.5. The format conversion factor,  $K_F$ , shall not apply for designs in accordance with ASD methods specified herein.

#### 2.3.6 Resistance Factor, $\phi$ (LRFD Only)

For LRFD, reference design values shall be multiplied by the resistance factor,  $\phi$ , specified in Table 2.3.6. The resistance factor,  $\phi$ , shall not apply for designs in accordance with ASD methods specified herein.

#### 2.3.7 Time Effect Factor, λ (LRFD Only)

For LRFD, reference design values shall be multiplied by the time effect factor,  $\lambda$ , specified in Appendix N.3.3. The time effect factor,  $\lambda$ , shall not apply for designs in accordance with ASD methods specified herein.

Table 2.3.3	Temperature Fac	ctor, Ct		
Reference Design Values	In-Service Moisture -		Ct	
values	Conditions ¹	T≤100°F	100°F <t≤125°f< th=""><th>125°F<t≤150°f< th=""></t≤150°f<></th></t≤125°f<>	125°F <t≤150°f< th=""></t≤150°f<>
Ft, E, Emin	Wet or Dry	1.0	0.9	0.9
	Dry	1.0	0.8	0.7
$F_b$ , $F_v$ , $F_c$ , and $F_{c\perp}$	Wet	1.0	0.7	0.5

 Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively. 2

**DESIGN VALUES FOR STRUCTURAL MEMBERS** 

	PROJECT NO.	SHEET NO.
PROJECT		
SUBJECT		
BY	DATE _	/ /
	SUBJECT	PROJECT

		ASD Only Load Duration Factor	ASD and LRFD							LRFD Only				
			Wet Service Factor	Temperature Factor	Group Action Factor	Geometry Factor ³	Penetration Depth Factor ³	End Grain Factor ³	Metal Side Plate Factor ³	Diaphragm Factor ³	Toe-Nail Factor 3	H Format Conversion Factor	Resistance Factor	Time Effect Factor
8	1	<i>12</i>	Lat	eral I	oads	10 1	ez 5	00 V.S		52 SE		85	1. JO	0
Dowel-type Fasteners (e.g. bolts, lag screws, wood screws, nails, spikes, drift bolts, & drift pins)	Z = Z x	CD	См	Ct	Cg	$C_{\Delta}$	÷	C _{eg}	1	C _{di}	Ctn	3.32	0.65	λ
Split Ring and Shear Plate	$\mathbf{P} = \mathbf{P} \mathbf{x}$	CD	CM	Ct	Cg	$C_{\Lambda}$	Cd	12	Cst		2019) 1919	3.32	0.65	λ
Connectors	Q' = Q x	CD	CM	Ct	Cg	$C_{\Delta}$	$C_d$		-	2		3.32	0.65	λ
Timber Rivets	$\mathbf{P} = \mathbf{P} \mathbf{x}$	CD	CM	Ct	8 <b>.</b>	1.		87	C _{st} ⁴		8 <b>.</b>	3.32	0.65	λ
THEOREM PRIVEIS	Q = Q x	CD	CM	Ct	100	$C_{\Delta}^{5}$	-01		C _{st} ⁴		100	3.32	0.65	λ
Spike Grids	Z = Z x	CD	См	Ct	853	$C_{\Delta}$	55	13	155	17	1873	3.32	0.65	λ
8			Witho	irawa	l Loa	ds								
Nails, spikes, lag screws, wood screws, & drift pins	W' = W x	CD	$C_M^2$	Ct	1998	198	-	$\mathbf{C}_{eg}$		×	Ctn	3.32	0.65	λ

1. The load duration factor, C_D, shall not exceed 1.6 for connections (see 11.3.2).

2. The wet service factor, CMs shall not apply to toe-nails loaded in withdrawal (see 12.5.4.1).

3. Specific information concerning geometry factors Ca, penetration depth factors Ca, end grain factors, Ceg, metal side plate factors, Ca, diaphragm factors, Ca, and toe-nail factors, Cim is provided in Chapters 12, 13, and 14.

The metal side plate factor, C_a, is only applied when iviet capacity (P_n, Q_n) controls (see Chapter 14).
 The geometry factor, C_a, is only applied when wood capacity, Q_w, controls (see Chapter 14).

#### 11.3.2 Load Duration Factor, Cp (ASD Only)

Reference design values shall be multiplied by the load duration factors,  $C_D \le 1.6$ , specified in 2.3.2 and Appendix B, except when the capacity of the connection is controlled by metal strength or strength of concrete/masonry (see 11.2.3, 11.2.4, and Appendix B.3). The impact load duration factor shall not apply to connections.

#### 11.3.3 Wet Service Factor, CM

Reference design values are for connections in wood seasoned to a moisture content of 19% or less and used under continuously dry conditions, as in most covered structures. For connections in wood that is unseasoned or partially seasoned, or when connections are exposed to wet service conditions in use, reference design values shall be multiplied by the wet service factors, C_{sp}, specified in Table 11.3.3.

#### 11.3.4 Temperature Factor, Ct

Reference design values shall be multiplied by the temperature factors, C, in Table 11.3.4 for connections that will experience sustained exposure to elevated temperatures up to 150°F (see Appendix C).

SHEET NO.
/ /

Tabulated withdrawal design values (W) are in pounds per inch of thread penetration into side grain of wood member. Length of thread penetration in main member shall not include the length of the tapered tip (see 12.2.1.1).											
Specific Gravity,	Lag Screw Diameter, D										
G ²	1/4"	5/16"	3/8"	7/16"	1/2"	5/8"	3/4"	7/8"	1"	1-1/8"	1-1/4"
0.73	397	469	538	604	668	789	905	1016	1123	1226	1327
0.71	381	450	516	579	640	757	868	974	1077	1176	1273
0.68	357	422	484	543	600	709	813	913	1009	1103	1193
0.67	349	413	473	531	587	694	796	893	987	1078	1167
0.58	281	332	381	428	473	559	641	719	795	869	940
0.55	260	307	352	395	437	516	592	664	734	802	868
0.51	232	274	314	353	390	461	528	593	656	716	775
0.50	225	266	305	342	378	447	513	576	636	695	752
0.49	218	258	red	332	367	434	498	559	617	674	730
0.47	205	242	278	312	345	408	467	525	580	634	686
0.46	199	235	269	302	334	395	453	508	562	613	664
0.44	186	220	252	283	312	369	423	475	525	574	621
0.43	179	212	243	273	302	357	409	459	508	554	600
0.42	173	205	235	264	291	344	395	443	490	535	579
0.41	167	198	226	254	281	332	381	428	473	516	559
0.40	161	190	218	245	271	320	367	412	455	497	538
0.39	155	183	210	236	261	308	353	397	438	479	518
0.38	149	176	202	227	251	296	340	381	422	461	498
0.37	143	169	194	218	241	285	326	367	405	443	479
0.36	137	163	186	209	231	273	313	352	389	425	460
0.35	132	156	179	200	222	262	300	337	373	407	441
0.31	110	130	149	167	185	218	250	281	311	339	367

Tabulated withdrawal design values, W, for lag screw connections shall be multiplied by all applicable adjustment factors (see Table 11.5.1).
 Specific gravity, G, shall be determined in accordance with Table 12.3.3A.

12.2.3.2 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of fastener penetration from 12.2.3.1 shall be multiplied by the length of fastener penetration,  $p_{t_s}$  into the wood member.

12.2.3.3 The reference withdrawal design value, in lbs/in. of penetration, for a single post-frame ring shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2D or Equation 12.2-4, with-in the range of specific gravities and nail diameters given in Table 12.2D. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'.

W = 1800 G² D (12.2-4)

12.2.3.4 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of ring shank penetration from 12.2.3.3 shall be multiplied by the length of ring shank penetration, p_b into the wood member. 12.2.3.5 Nails and spikes shall not be loaded in

withdrawal from end grain of wood ( $C_{eg}$ =0.0). 12.2.3.6 Nails, and spikes shall not be loaded in

withdrawal from end-grain of laminations in crosslaminated timber ( $C_{eg}$ =0.0).

#### 12.2.4 Drift Bolts and Drift Pins

Reference withdrawal design values, W, for connections using drift bolt and drift pin connections shall be determined in accordance with 11.1.1.3. DOWEL-TYPE FASTENERS

		PROJECT NO.	SHEET NO.
	PROJECT _		
LONGITUDE	SUBJECT _		
ONE TWENTY [®] ENGINEERING & DESIGN	BY	 DATE _	/ /

### Table 12.3.3A Assigned Specific Gravities

Species Combination	Specific ¹ Gravity, G	Species Combinations of MSR and MEL Lumber	Specific ¹ Gravity, G
Alaska Cedar	0.47	Douglas Fir-Larch	
Alaska Hemlock	0.46	E=1,900,000 psi and lower grades of MSR	0.50
Alaska Spruce	0.41	E=2,000,000 psi grades of MSR	0.51
Alaska Yellow Cedar	0.46	E=2,100,000 psi grades of MSR	0.52
Aspen	0.39	E=2,200,000 psi grades of MSR	0.53
Balsam Fir	0.36	E=2,300,000 psi grades of MSR	0.54
Beech-Birch-Hickory	0.71	E=2,400,000 psi grades of MSR	0.55
Coast Sitka Spruce	0.39	Douglas Fir-Larch (North)	
Cottonwood	0.41	E=1,900,000 psi and lower grades of MSR and MEL	0.49
Douglas Fir-Larch	0.50	E=2,000,000 psi to 2,200,000 psi grades of MSR and MEL	0.53
Douglas Fir-Larch (North)	0.49	E=2,300,000 psi and higher grades of MSR and MEL	0.57
Douglas Fir-South	0.46	Douglas Fir-Larch (South)	
Eastern Hemlock	0.41	E=1,000,000 psi and higher grades of MSR	0.46
Eastem Hemlock-Balsam Fir	0.36	Engelmann Spruce-Lodgepole Pine	
Eastern Hemlock-Tamarack	0.41	E=1,400,000 psi and lower grades of MSR	0.38
Eastern Hemlock-Tamarack (North)	0.47	E=1,500,000 psi and higher grades of MSR	0.46
Eastern Softwoods	0.36	Hem-Fir	
Eastern Spruce	0.41	E=1,500,000 psi and lower grades of MSR	0.43
Eastern White Pine	0.36	E=1,600,000 psi grades of MSR	0.44
Engelmann Spruce-Lodgepole Pine	0.38	E=1,700,000 psi grades of MSR	0.45
Hem-Fir	0.43	E=1,800,000 psi grades of MSR	0.46
Hem-Fir (North)	0.46	E=1,900,000 psi grades of MSR	0.47
Mixed Maple	0.55	E=2,000,000 psi grades of MSR	0.48
Mixed Oak	0.68	E=2,100,000 psi grades of MSR	0.49
Mixed Southern Pine	0.51	E=2,200,000 psi grades of MSR	0.50
Mountain Hemlock	0.47	E=2,300,000 psi grades of MSR	0.51
Northern Pine	0.42	E=2,400,000 psi grades of MSR	0.52
Northern Red Oak	0.68	Hem-Fir (North)	
Northern Species	0.35	E=1,000,000 psi and higher grades of MSR and MEL	0.46
Northern White Cedar	0.31	Southern Pine	-0667.0
Ponderosa Pine	0.43	E=1,700,000 psi and lower grades of MSR and MEL	0.55
Red Maple	0.58	E=1,800,000 psi and higher grades of MSR and MEL	0.57
Red Oak	0.67	Spruce-Pine-Fir	
Red Pine	0.44	E=1,700,000 psi and lower grades of MSR and MEL	0.42
Redwood, close grain	0.44	E=1,800,000 psi and 1,900,000 grades of MSR and MEL	0.46
Redwood, open grain	0.37	E=2,000,000 psi and higher grades of MSR and MEL	0.50
Sitka Spruce	0.43	Spruce-Pine-Fir (South)	
Southern Pine	0.55	E=1,100,000 psi and lower grades of MSR	0.36
Sprace-Pine-Fir	0.42	E=1,200,000 psi to1,900,000 psi grades of MSR	0.42
Spruce-Pine-Fir (South)	0.36	E=2,000,000 psi and higher grades of MSR	0.50
Western Cedars	0.36	Western Cedars	and some the
Western Cedars (North)	0.35	E=1,000,000 psi and higher grades of MSR	0.36
Western Hemlock	0.47	Western Woods	
Western Hemlock (North)	0.46	E=1,000,000 psi and higher grades of MSR	0.36
Western White Pine	0.40	The standard has been added by any standard	And some that
Western Woods	0.36		
White Oak	0.73		
Yellow Poplar	0.43		

1. Specific gravity, G, based on weight and volume when oven-dry. Different specific gravities, G, are possible for different grades of MSR and MEL lumber (see Table 4C, Footnote 2).

		PROJECT NO.	SHEET NO.
	PROJECT		
ONE TWENTY ^O ENGINEERING & DESIGN	BY		/ /

(two member) Connections1,2,3,4 for sawn lumber or SCL with ASTM A653, Grade 33 steel side plate (for ts<1/4") or

ASTM A 36 steel side plate (for t_s=1/4")

Table 12K

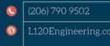
(tabulated lateral design values are calculated based on an assumed length of lag screw penetration, p, into the main member equal to 8D)

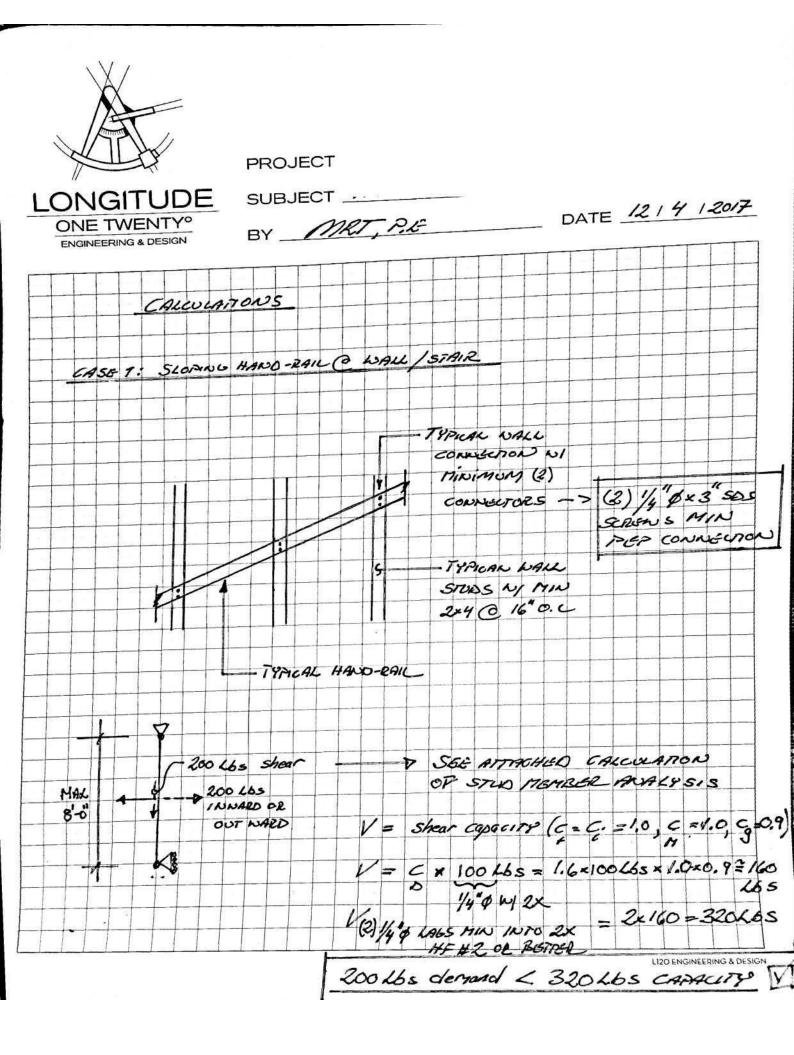
LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear

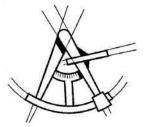
G SC	Side Member Thickness	Lag Screw Diameter	G=0.67	Red Oak	G=0.55 Mir of Manlo	Southern Pine	G=0.5	Douglas Fir-Larch	G=0.49 Dountes Find arch	(N)	G=0.46 Douglas Fin(S)	Hem-Fir(N)	G=0.43	Hem-Fir	G=0.42	Spruce-Pine-Fir	G=0.37 Redwood	(open grain)	G=0.36 Eastern Softwoods Soruce-Pine-Fir(S)	Western Cedars Western Woods	G=0.35	Northern Species
	t,	D	Z	Z,	Z,	Z,	Z,	Z,	Z	Z,	Z	Z,	Z	Z,	Z	Z,	Z	Z,	Z,	Z,	Z,	Z_
	in.	in.	Ibs.	lbs.	Ibs.	Ibs.	lbs.	Ibs.	lbs.	lbs.	lbs.	bs.	lbs.	lbs.	Ibs.	lbs.	bs.	Ibs.	lbs.	Ibs.	lbs.	lbs. 90
	0.075	1/4	170	130	160	120	150	110	150	110	150	100	140	100	140	100	130	90	130	90	130	
	(14 gage)	5/16	220	160	200	140	190	130	190	130	190	130	180	120	180	120	170	110	170	110	160	100
	0.405	3/8	220	160	200	140	200	130	190	130	190	120	180	120	180	120	170	110	170	100	170	100
	0.105	1/4	180	140	170	130	160	120	160	120	160	110	150	110	150	110	140	100	140	100	140	90
	(12 gage)	5/16	230	170	210	150	200	140	200	140	190	130	190	130	190	120	180	110	170	110	170	110
	0.120	3/8	230	160 150	210	140	200	140	200	130	200	130 120	190	120	190	120	180 150	110	180	110	170	110
			190		180	130		120		120	160		160		160			100	150	100		
	(11 gage)	5/16	230	170	210	150	210	140	200	140	200	140	190	130	190	130	180	120	180	120	180	110
	0.404	3/8	240	170	220	150	210	140	210	140	200	130 120	200	130	190	120	180	110	180	110	180	110
	0.134	1/4	200	150	180	140	180	130	170	130	170		160	120	160	110	150	110	150	100	150	
	(10 gage)	5/16 3/8	240 240	180	220 220	160	210 220	150	210	140	200	140	200	130	200	130	190	120	180	120	180	120
	0.179	3/6		170	220	150 150		140	210	140	210	140 140	200	130 130	200	130	190 180	120	190	120 120	180 170	110
			220				200	150	200	140	190				190	130		120	170			
	(7 gage)	5/16	260	190	240	170	230	160	230	160	230	150	220	150	220	150	210	130	200	130	200	130
	0.000	3/8	270	190	250	170	240	160	240	160	230	150	220	140	220	140	210	130	210	130	200	130
	0.239	1/4	240	180	220	160	210	150	210	150	200	140	190	140	190	130	180	120	180	120	180	120
	(3 gage)	5/16	300	220 220	280	190	270	180	260	180	260	170	250	160	250	160	230	150	230	150	230	140 140
		3/8	310		280	190	270	180	270	180	260	170	250	160	250	160	240	140	230	140	230	
	I	7/16	420	290	390	260	380	240	370	240	360	230	350	220	350	220	330	200	330	200	320	190
	I	1/2	510	340	470	300	460	290	450	280	440	270	430	260	420	260	400	240	400	230	390	230
		5/8	770	490	710	430	680	400	680	400	660	380	640	370	630	360	600	330	590	330	580	320
	I	3/4	1110	670	1020	590	980	560	970	550	950	530	920	500	910	500	860	450	850	450	840	440
	I	7/8	1510	880	1390	780	1330	730	1320	710	1280	690	1250	650	1230	650	1170	590	1160	590	1140	570
	1/4	1	1940	1100	1780	960 160	1710	910 150	1700	890	1650	860 140	1600	820	1590	810	1500	740	1480	730 120	1460	710
	1/4	1/4	240		220		210	150	210	150	200		200	140	190	130	180	120	180		180	
		5/16	310	220	280	200	270		270	180	260	170	250	170	250	160	230	150	230	150	230	140
		3/8	320	220	290	190	280	180	270	180	270	170	260	160	250	160	240	150	240	140	230	140
	· ·	7/16	480 580	320	440	280	420	$\sim$ $\sim$	420	260	410	250 310	390	240	390	230	370	220	360	210	360	210
		1/2 5/8		390	540	340	520	320	510 740	320	500		480	290	480	290	460	270	450	260	440	260 350
		3/4	850 1200	530	780	470	750 1060	440 600	1050	440	720 1020	420 570	700 990	400	690	400 530	660 930	370 490	650	360 480	640 900	470
				730		640				590				540	980				920			
		7/8	1600 2040	930 1150	1470	820 1000	1410	770 950	1400	750 930	1360	720 900	1320 1680	690 850	1310 1660	680 840	1240	630 770	1220	620 760	1200 1530	600 740
		1	2040	1100	1870	1000	1800	900	1780	830	1730	900	1000	600	1000	040	1570	110	1550	700	1030	740

1. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).

Tabulated lateral design values, Z, shall be intripried by an appreciate adjustment factors (see Faber 17.57).
 Tabulated lateral design values, Z, are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 8D; dowel bearing strengths, F_e, of 61,850 psi for ASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths, F_{yin} of 70,000 psi for D = 1/4", 60,000 psi for D = 5/16", and 45,000 psi for D ≥3/8".
 Where the lag screw penetration, p, is less than 8D but not less than 4D, tabulated lateral design values, Z, shall be multiplied by p/8D or lateral design values.


shall be calculated using the provisions of 12.3 for the reduced penetration.
4. The length of lag screw penetration, p, not including the length of the tapered tip, E (see Appendix Table L2), of the lag screw into the main member shall not be less than 4D. See 12.1.4.6 for minimum length of penetration, p_{min}.



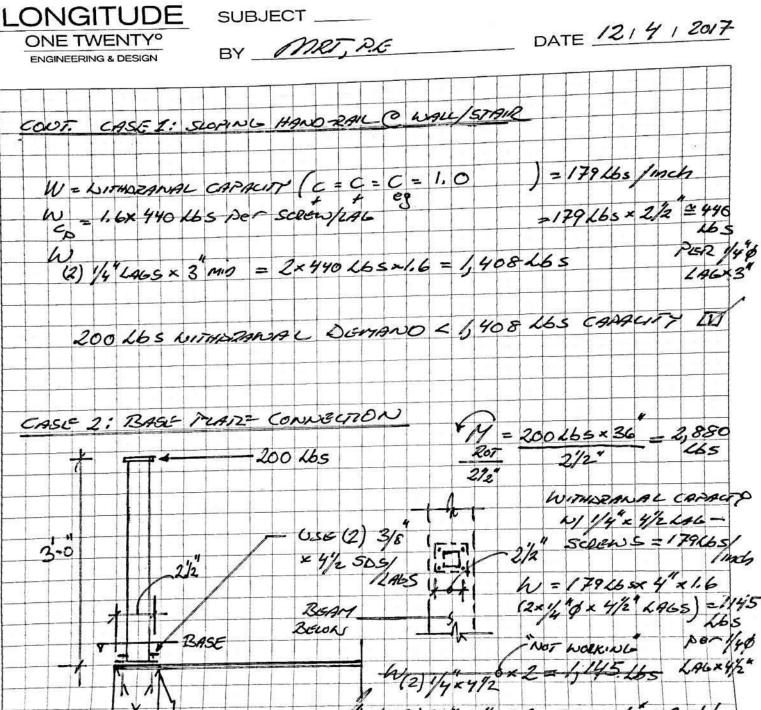


To determine the minimum required hand-rail connections, with a pre-manufactured hand-rail system provided by others. Our scope is limited to assess the minimum connection requirements of the hand-rail system as listed below. Our assumptions are that the base-plates, welds and metal member properties of the pre-manufactured complete system are sufficient in strength to support the code prescribed design loads, for which our design have been provided to comply with.

We have analyzed and verified the minimum connection requirements, for the following conditions:

- Wall connection (sloping wall @ stair)
   Result: minimum (2) ¼" DIA x 3" SDS screws to a minimum of (1) support studs at each connection
- Base-plate connection (vertical post application, typical)
   Result: The base-plate column connection to have a minimum of (4) 3/8" x 4 ½ lag-screws into full width support member/beams below
- Wall connection (horizontal typical application)
   Result: (2) ¼" DIA x 3" SDS screws to a minimum of (2) support studs at each connection








PROJECT

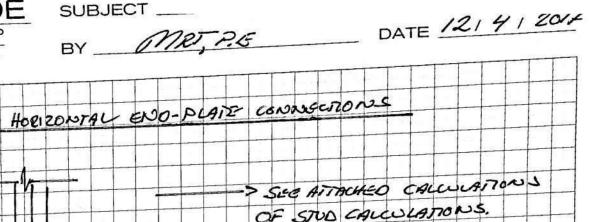


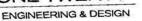
٨

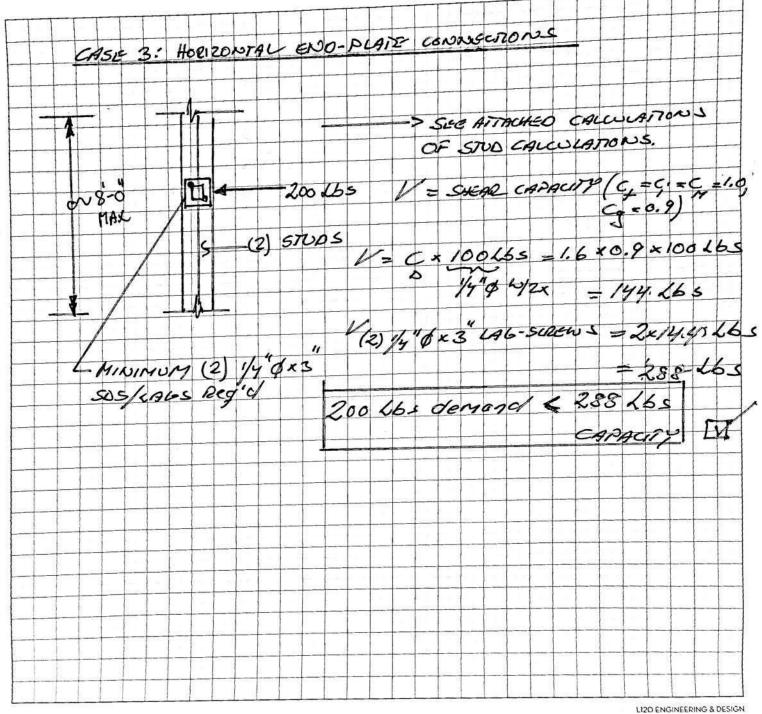
X



= 3,110. -


W(2) 3/8"x 4/2 × 2 = 243× 4". ×2 ×1.6


2,850 Lbs demand 2 3,10 CAPACITY




PROJECT

ONGITUDE ONE TWENTY°







## SIMPSON

Strong-I

Anchor Designer™ Software

Version 2.5.6582.0

#### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

#### 2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

#### Anchor Information:

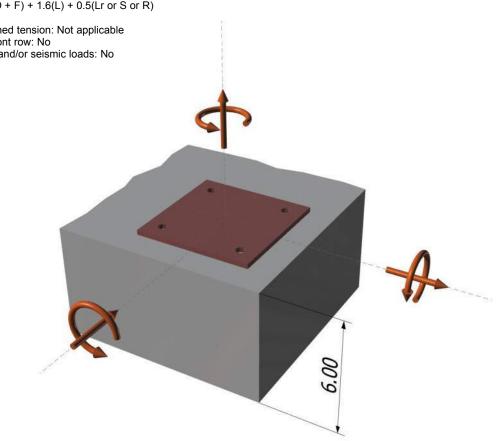
Anchor type: Concrete screw Material: Carbon Steel Diameter (inch): 0.375 Nominal Embedment depth (inch): 3.250 Effective Embedment depth, her (inch): 2.400 Code report: ICC-ES ESR-2713 Anchor ductility: No hmin (inch): 5.00 cac (inch): 3.63 Cmin (inch): 1.75 Smin (inch): 3.00

#### Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 1.2(D + F) + 1.6(L) + 0.5(Lr or S or R)Seismic design: No Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	1/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			


Project description: Location: Fastening description:

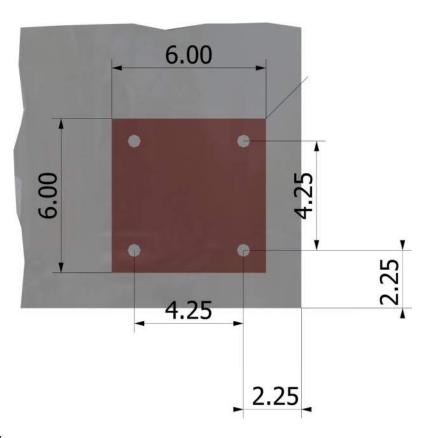
#### Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 6.00 State: Cracked Compressive strength, f_c (psi): 2500  $\Psi_{c,V}$ : 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable Build-up grout pad: No

#### **Base Plate**

Length x Width x Thickness (inch): 6.00 x 6.00 x 0.25




816



Anchor Designer™ Software Version 2.5.6582.0

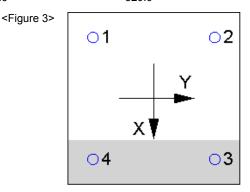
Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	2/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

<Figure 2>



#### **Recommended Anchor**

Anchor Name: Titen HD® - 3/8"Ø Titen HD, hnom:3.25" (83mm) Code Report: ICC-ES ESR-2713




N Anchor Designer™	Company:	L120 Engineering & Design	Date:	5/3/2018
Software	Engineer:	MRT	Page:	3/5
	Project:	Hand-rail calculation	•	
Version 2.5.6582.0	Address:			
a.	Phone:			
	E-mail:			

#### 3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	1250.4	-80.0	0.0	80.0
2	1250.4	-80.0	0.0	80.0
3	0.0	-80.0	0.0	80.0
4	0.0	-80.0	0.0	80.0
Sum	2500.7	-320.0	0.0	320.0

Maximum concrete compression strain (‰): 0.12 Maximum concrete compression stress (psi): 538 Resultant tension force (lb): 2501 Resultant compression force (lb): 2501 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00



#### 4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

Nsa (lb)	$\phi$	$\phi N_{sa}$ (lb)
10890	0.65	7079

#### 5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

Nb = kcλa√f	chef ^{1.5} (Eq. 17.4	4.2.2a)		·					
Kc	λa	ťc (psi)	hef (in)	Nb (lk	<b>)</b>				
17.0	1.00	2500	2.400	3160	)	_			
$\phi N_{cbg} = \phi (A$	Nc / ANco) Yec, N	$\mathcal{V}_{ed,N} \mathcal{\Psi}_{c,N} \mathcal{\Psi}_{cp,N} \mathcal{N}_{b}$	(Sec. 17.3.1 8	& Eq. 17.4.2.1	lb)				
$A_{Nc}$ (in ² )	$A_{Nco}$ (in ² )	c _{a,min} (in)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	Ψc,N	$\Psi_{cp,N}$	N _b (lb)	$\phi$	$\phi N_{cbg}$ (lb)
72.72	51.84	2.25	1.000	0.888	1.00	1.000	3160	0.65	2557
	-	Anchor in Tens 0) ⁿ (Sec. 17.3.4	•		ort)				
$\Psi_{c,P}$	λa	N _p (lb)	f' _c (psi)	n		$\phi$	$\phi N_{pn}$ (lb)		
1.0	1.00	2700	2500	0.50		0.65	1755	_	

## SIMPSON Anchor Designer™ Software Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	4/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

#### 8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

V _{sa} (lb)	$\phi_{ ext{grout}}$	$\phi$	$\phi_{grout}\phi V_{sa}$ (lb)
4460	1.0	0.60	2676

### 9. Concrete Breakout Strength of Anchor in Shear (Sec. 17.5.2)

#### Shear parallel to edge in x-direction: $V_{by} = \min[7(I_e/d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f_c c_{a1}^{1.5}}; 9\lambda_a \sqrt{f_c c_{a1}^{1.5}}] \text{ (Eq. 17.5.2.2a \& Eq. 17.5.2.2b)}$ le (in) *d*₄ (in) Vby (lb) λa f'c (psi) Ca1 (in) 2500 2.40 0.375 1.00 2.25 1049 $\phi V_{cbgx} = \phi (2) (A_{Vc} / A_{Vco}) \Psi_{ec, V} \Psi_{ed, V} \Psi_{c, V} \Psi_{h, V} V_{by} (\text{Sec. 17.3.1, 17.5.2.1(c) \& Eq. 17.5.2.1b})$ $A_{Vc}$ (in²) $A_{Vco}$ (in²) $\Psi_{ec,V}$ $\Psi_{ed,V}$ $\Psi_{c,V}$ $\Psi_{h,V}$ $V_{by}$ (lb) $\phi V_{cbgx}$ (lb) ø 33.33 22.78 1.000 1.000 1.000 1.000 1049 0.70 2148

#### 10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)

$\phi V_{cpg} = \phi k$	$c_{cp}N_{cbg} = \phi k_{cp}(A_{N})$	с / Anco) Ѱес,N Ѱе	d,N Ѱс,N Ѱср,NN	₀(Sec. 17.3.1 8	Eq. 17.5.3.1b	))			
Kcp	A _{Nc} (in ² )	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	Ψc,N	$\Psi_{cp,N}$	N _b (lb)	$\phi$	$\phi V_{cpg}$ (lb)
1.0	102.01	51.84	1.000	0.888	1.000	1.000	3160	0.70	3863

#### 11. Results

#### Interaction of Tensile and Shear Forces (Sec. 17.6.)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1250	7079	0.18	Pass
Concrete breakout	2501	2557	0.98	Pass (Governs)
Pullout	1250	1755	0.71	Pass
Shear	Factored Load, Vua (Ib)	Design Strength, øVn (lb)	Ratio	Status
Steel	80	2676	0.03	Pass
Concrete breakout y+	160	2148	0.07	Pass
Pryout	320	3863	0.08	Pass (Governs)
Interaction check Nu	a∕φNn Vua∕φVn	Combined Rati	o Permissible	Status
Sec. 17.61 0.9	0.00	97.8 %	1.0	Pass

3/8"Ø Titen HD, hnom:3.25" (83mm) meets the selected design criteria.



Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	5/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

### 12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Project: Location: Single 2x4 stud (staircase) Multi-Loaded Multi-Span Beam [2015 International Building Code(2015 NDS)] 1.5 IN x 3.5 IN x 8.0 FT #2 - Hem-Fir - Dry Use Section Adequate By: 0.8% Controlling Factor: Deflection	StruCalc 9.0         page
DEFLECTIONS         Center           Live Load         0.53         IN L/181           Dead Load         0.01         in           Total Load         0.54         IN L/177           Live Load Deflection Criteria: L/180         Total Load Deflection Criteria: L/180	/120
REACTIONSABLive Load100lb100lbDead Load4lb4lbTotal Load104lb104lbBearing Length0.17in0.17in	1
BEAM DATA     Center       Span Length     8 ft       Unbraced Length-Top     0 ft       Unbraced Length-Bottom     8 ft       Live Load Duration Factor     1.60	A B
Notch Depth 0.00	UNIFORM LOADS Center
MATERIAL PROPERTIES #2 - Hem-Fir	Uniform Live Load 0 plf
Base ValuesAdjustedBending Stress: $Fb = 850 psi$ $Fb' = 2040$ $Cd=1.60 CF=1.50$	Uniform Dead Load 0 plf Beam Self Weight 1 plf Total Uniform Load 1 plf
Shear Stress: $Fv = 150 \text{ psi} Fv' = 240$	DSi POINT LOADS - CENTER SPAN Load Number One
$Cd=1.60$ Modulus of Elasticity: $E = 1300$ ksi $E' = 1300$ Comp. $\perp$ to Grain: $Fc - \perp = 405$ psi $Fc - \perp' = 405$	ksi Live Load 200 lb
Controlling Moment: 408 ft-lb	

4.0 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 **Controlling Shear:** -104 lb At right support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Reg'd	Provided
Section Modulus:	2.4 in3	3.06 in3
Area (Shear):	0.65 in2	5.25 in2
Moment of Inertia (deflection):	5.32 in4	5.36 in4
Moment:	408 ft-lb	521 ft-lb
Shear:	-104 lb	840 lb

Project: Location: Single 2x6 stud (st Multi-Loaded Multi-Span Bea [2015 International Building 0 1.5 IN x 5.5 IN x 9.0 FT #2 - Hem-Fir - Dry Use Section Adequate By: 139.3' Controlling Factor: Moment	am Code(2015 NDS)]	StruCalc 9.0 StruCalc Version 10.0.1.6
DEFLECTIONS         Center           Live Load         0.19         IN I           Dead Load         0.01         in           Total Load         0.20         IN I           Live Load         Deflection Criterion         Criterion	./556 ./533	LOADING DIAGRAM
REACTIONSALive Load100Dead Load7IbTotal Load107IbBearing Length0.18	B 100 lb 7 lb 107 lb 0.18 in	
BEAM DATA Span Length Unbraced Length-Top Unbraced Length-Bottom Live Load Duration Factor	<u>Center</u> 9 ft 0 ft 9 ft 1.60 0.00	A 9 ft B
Notch Depth MATERIAL PROPERTIES	0.00	UNIFORM LOADS Center
#2 - Hem-Fir		Uniform Live Load 0 plf Uniform Dead Load 0 plf
Bending Stress:	<u>Base Values</u> <u>Adjusted</u> Fb = 850 psi Fb' = 1768 psi <i>Cd=1.60 CF=1.30</i>	Beam Self Weight 2 plf Total Uniform Load 2 plf
Shear Stress:	Fv = 150 psi Fv' = 240 psi <i>Cd=1.60</i>	POINT LOADS - CENTER SPAN Load Number One
Modulus of Elasticity: Comp. [⊥] to Grain:	E = 1300 ksi E' = 1300 ksi Fc - ⊥ = 405 psi Fc - ⊥' = 405 psi	Live Load 200 lb Dead Load 0 lb Location 4.5 ft
Controlling Moment:	466 ft-lb	

4.5 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Controlling Shear: -107 lb At right support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Req'd	Provided
Section Modulus:	3.16 in3	7.56 in3
Area (Shear):	0.67 in2	8.25 in2
Moment of Inertia (deflection):	6.73 in4	20.8 in4
Moment:	466 ft-lb	1114 ft-lb
Shear:	-107 lb	1320 lb

Project: Location: Double 2x4 stud (f Multi-Loaded Multi-Span Be [2015 International Building ( 2 ) 1.5 IN x 3.5 IN x 8.0 FT #2 - Hem-Fir - Dry Use Section Adequate By: 101.6 Controlling Factor: Deflectio	Code(2015 NDS)] %	StruCalc 9.0 StruCalc Version 10.0.1.6
DEFLECTIONSCenterLive Load0.26INDead Load0.01inTotal Load0.28INLive Load Deflection Criter	L/363 L/346	LOADING DIAGRAM
REACTIONSALive Load100Dead Load8Total Load108Bearing Length0.09	B 100 lb 8 lb 108 lb 0.09 in	
BEAM DATA Span Length Unbraced Length-Top Unbraced Length-Bottom Live Load Duration Factor Notch Depth	<u>Center</u> 8 ft 0 ft 8 ft 1.60 0.00	A str. B
MATERIAL PROPERTIES #2 - Hem-Fir Bending Stress:	<u>Base Values</u> <u>Adjusted</u> Fb = 850 psi Fb' = 2040 psi	UNIFORM LOADS       Center         Uniform Live Load       0       plf         Uniform Dead Load       0       plf         Beam Self Weight       2       plf         Total Uniform Load       2       plf
Shear Stress: Modulus of Elasticity: Comp. [⊥] to Grain:	$Cd=1.60 \ CF=1.50$ $Fv = 150 \ psi$ $Fv' = 240 \ psi$ Cd=1.60 $E = 1300 \ ksi$ $E' = 1300 \ ksi$ $Fc - \bot = 405 \ psi$ $Fc - \bot' = 405 \ psi$	POINT LOADS - CENTER SPAN         Load Number       One         Live Load       200 lb         Dead Load       0 lb         Location       4 ft
<b>Controlling Moment:</b> 4.0 Et from left support of	416 ft-lb	

4.0 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 **Controlling Shear:** 108 lb At left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	<u>Req'd</u>	Provided
Section Modulus:	2.45 in3	6.13 in3
Area (Shear):	0.67 in2	10.5 in2
Moment of Inertia (deflection):	5.32 in4	10.72 in4
Moment:	416 ft-lb	1041 ft-lb
Shear:	108 lb	1680 lb



# **Balloon Framed stud calculations**





VITRUVIU: CUS PROJECT LOG	STOMER:	3/3/2021 StruCalc		COMPANY: DESIGNED BY: REVIEWED BY:	Mans	Engineering & Desig 5 Thurfjell 5 Thurfjell	n, LLC
	LEVEL: CATION: TYPE: ATERIAL:	, Roof 2x6 Ballo COLUMN SOLID SA		LOADING: vind load <b>@@@%</b> r a NDS:	ASD ap2p0118c 2018		g Code
Hem-Fir	No	. 2	(1) 1.5 X 5.5	DRY			



	Area		lx	ly		BSW	Lan	ns	G		Kcr
	(in²)		(in⁴)	(in⁴)		(lbf/ft)				Cr	eep Factor
	8.25		20.8	1.55		1.63	1		0.43		1
STR	ENGTH P	ROPERTIE	S								
		Fb (psi)	Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	En	nin (psi) x10³
Base	e Values	850	525		150	1300		405	1300		470
djusted	l Values	1105	682		150	1430		405	1300		470
	с _М	1	1		1	1		1	1		1
	с _т	1	1		1	1		1	1		1
	с _і	1	1		1	1		1	1		1
	C _F	1.3	1.3		1	1.1		1	1		1
endin	g Adjustment	Factors	C _{fu} = 1 C _r = 1								
COI	UMN DA	ГА									
			Unbraced Length	(ft)	Column End						
pan	Lend	jth (ft)	X	Y Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (	Y Axis)
1		7.25	17.25	1	0	0.18	1.00	1.00	37.64	8	,
PAS	S-FAIL										
			PASS/FAIL	MAG	GNITUDE	STRENGTH		ATION (ft)	LOAD COMBO	DURAT	ON FACTOR
		ress Y (psi)	PASS (89.5%)		15.7	150.0		ATION (ft) 17.25	LOAD COMBO D+L	DURAT	ON FACTOR 1
	Bending Str	ess Y (psi)	PASS (89.5%) PASS (46.3%)	:	15.7 590.2	150.0 1099.4		17.25 8.62		DURAT	
	Bending Str Def	ess Y (psi) lection (in)	PASS (89.5%) PASS (46.3%) PASS (35.9%)	0.737	15.7 590.2 7 (=L/281)	150.0 1099.4 1.150 (=L/180)		17.25 8.62 8.62	D+L D+L L	DURAT	1
C	Bending Str Def Compressive S	ess Y (psi) ection (in) tress (psi)	PASS (89.5%) PASS (46.3%) PASS (35.9%) PASS (61.6%)	0.737	15.7 590.2 7 (=L/281) 100.4	150.0 1099.4 1.150 (=L/180) 261.1		17.25 8.62 8.62 0	D+L D+L L D+L	DURAT	1
	Bending Str Def Compressive S Bearing S	eess Y (psi) lection (in) stress (psi) stress (psi)	PASS (89.5%) PASS (46.3%) PASS (35.9%) PASS (61.6%) PASS (98.9%)	0.737	15.7 590.2 7 (=L/281)	150.0 1099.4 1.150 (=L/180)		17.25 8.62 8.62 0 0	D+L D+L L	DURAT	1 1
	Bending Str Def Compressive S	eess Y (psi) lection (in) stress (psi) stress (psi)	PASS (89.5%) PASS (46.3%) PASS (35.9%) PASS (61.6%)	0.737	15.7 590.2 7 (=L/281) 100.4	150.0 1099.4 1.150 (=L/180) 261.1		17.25 8.62 8.62 0	D+L D+L L D+L	DURAT	1 1 1
Bendi	Bending Str Def Compressive S Bearing S ing-Compress	ess Y (psi) lection (in) stress (psi) stress (psi) sion (Unit)	PASS (89.5%) PASS (46.3%) PASS (35.9%) PASS (61.6%) PASS (98.9%) PASS (1.6%)	0.737	15.7 590.2 7 (=L/281) 100.4 16.4	150.0 1099.4 1.150 (=L/180) 261.1 1430.0		17.25 8.62 8.62 0 0	D+L D+L L D+L D+L D+L	DURAT	1 1 1 1
Bendi REA	Bending Str Def Compressive S Bearing S ing-Compress	lection (in) Stress (psi) Stress (psi) Storess (psi) Store (Unit) Units for (	PASS (89.5%) PASS (46.3%) PASS (35.9%) PASS (61.6%) PASS (98.9%) PASS (1.6%)	0.737	15.7 590.2 7 (=L/281) 100.4 16.4 0.98	150.0 1099.4 1.150 (=L/180) 261.1 1430.0 1.00		17.25 8.62 8.62 0 0 8.62	D+L D+L L D+L D+L D+L D+L		1 1 1 1
Bendi REA axis	Bending Str Def Compressive S Bearing S ing-Compress CTIONS DEAD	ess Y (psi) lection (in) Stress (psi) Stress (psi) ston (Unit) Units for Y LIVE	PASS (89.5%) PASS (46.3%) PASS (35.9%) PASS (61.6%) PASS (98.9%) PASS (1.6%) V: Ibf Units for M: LIVE ROOF	0.737 Ibf-ft SNOW	15.7 590.2 7 (=L/281) 100.4 16.4 0.98 WIND +	150.0 1099.4 1.150 (=L/180) 261.1 1430.0 1.00 WIND -	SEISMIC +	17.25 8.62 8.62 0 0 8.62 SEISMIC -	D+L D+L D+L D+L D+L ICE	RAIN	1 1 1 1 1 5 EARTH
Bendi REA axis A	Bending Str Def Compressive S Bearing S ing-Compress CTIONS DEAD 328	ess Y (psi) lection (in) Stress (psi) Stress (psi) stion (Unit) Units for Y LIVE 500	PASS (89.5%) PASS (46.3%) PASS (35.9%) PASS (61.6%) PASS (98.9%) PASS (1.6%) V: lbf Units for M: LIVE ROOF 0	0.737 Ibf-ft SNOW 0	15.7 590.2 7 (=L/281) 100.4 16.4 0.98 WIND + 0	150.0 1099.4 1.150 (=L/180) 261.1 1430.0 1.00 WIND - 0	SEISMIC + 0	17.25 8.62 8.62 0 0 8.62 SEISMIC - 0	D+L D+L L D+L D+L D+L ICE 0	RAIN	1 1 1 1 1 1 EARTH 0
Bendi REA axis A B	Bending Str Def Compressive S Bearing S ing-Compress CTIONS DEAD	ess Y (psi) lection (in) stress (psi) stress (psi) ston (Unit) Units for Y LIVE	PASS (89.5%) PASS (46.3%) PASS (35.9%) PASS (61.6%) PASS (98.9%) PASS (1.6%) V: Ibf Units for M: LIVE ROOF	0.737 Ibf-ft SNOW	15.7 590.2 7 (=L/281) 100.4 16.4 0.98 WIND +	150.0 1099.4 1.150 (=L/180) 261.1 1430.0 1.00 WIND -	SEISMIC +	17.25 8.62 8.62 0 0 8.62 SEISMIC -	D+L D+L D+L D+L D+L ICE	RAIN	1 1 1 1 1 5 EARTH
Bendi REA axis A B ( axis	Bending Str Def Compressive S Bearing S ing-Compress CCTIONS DEAD 328 0	ess Y (psi) lection (in) stress (psi) stress (psi) storess (psi) storess (psi) store (psi)	PASS (89.5%) PASS (46.3%) PASS (35.9%) PASS (61.6%) PASS (98.9%) PASS (1.6%) V: Ibf Units for M: LIVE ROOF 0 0	0.737 Ibf-ft SNOW 0 0	15.7 590.2 7 (=L/281) 100.4 16.4 0.98 WIND + 0 0	150.0 1099.4 1.150 (=L/180) 261.1 1430.0 1.00 WIND - 0 0	SEISMIC + 0 0	17.25 8.62 0 0 8.62 SEISMIC - 0 0	D+L D+L D+L D+L D+L ICE 0 0	RAIN 0 0	1 1 1 1 1 1 <b>EARTH</b> 0 0
Bendi REA Z axis A	Bending Str Def Compressive S Bearing S ing-Compress CTIONS DEAD 328	ess Y (psi) lection (in) Stress (psi) Stress (psi) stion (Unit) Units for Y LIVE 500	PASS (89.5%) PASS (46.3%) PASS (35.9%) PASS (61.6%) PASS (98.9%) PASS (1.6%) V: lbf Units for M: LIVE ROOF 0	0.737 Ibf-ft SNOW 0	15.7 590.2 7 (=L/281) 100.4 16.4 0.98 WIND + 0	150.0 1099.4 1.150 (=L/180) 261.1 1430.0 1.00 WIND - 0	SEISMIC + 0	17.25 8.62 8.62 0 0 8.62 SEISMIC - 0	D+L D+L L D+L D+L D+L ICE 0	RAIN	1 1 1 1 1 EARTH 0

Α

В

LOAD LIST						
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Uniform (lbf/ft)	10	10	0	17.25	Live	Y
Point (lbf)	-500	-	17.25	-	Live	Z
Point (lbf)	-300	-	17.25	-	Dead	Z
Self Weight (lbf/ft)	1.63	1.63	0	17.25	Dead	Z

NOTES

Page 20



	DATE:	3/3/2021		COMPANY:	L120	Engineering & Desig	gn, LLC
VITRUVIU	IS BUILD:	StruCalc		DESIGNED BY:	Man	s Thurfjell	
CU	STOMER:			REVIEWED BY:	Man	s Thurfjell	
PROJECT LO	CATION:						
		,					
	LEVEL:	Roof		LOADING:	ASD		
LC	OCATION:	1.75x5.5 L	SL Balloon Frame (@	12") (win <b>6000aEd</b> f	fa <b>203</b> 8	<b>appeliedtaonals/Bonival</b> ia	ag 🖾 de
	TYPE:	COLUMN		NDS:	2018	S NDS	
M	ATERIAL:	STRUCTU	RAL COMPOSITE LUN	/IBER			
Weyerhaeuser	1.55E Timbe	rStrand LSL	(1) 1.75 X 5.5	DRY			



	Area		lx	ly		BSW	Lan	ns	Cfn		Kcr
	(in²)		(in ⁴ )	(in⁴)		(lbf/ft)				Cr	eep Factor
	9.62		24.26	2.46		3.01	1		10.87		1
STR	ENGTH F	PROPERTIE									
	-	Fb (psi)	Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	En	nin (psi) x10 ³
	Values	2325	1290		310	2170		900	1550		787.815
justed	Values	2325	1290		310	2170		900	1550		788
	с _М	1	1		1	1		1	1		1
	с _т	1	1		1	1		1	1		1
-	g Adjustme		C _V = 1.07 C _r = 1	Volun	ne factor Is app	lied on a load co	nbination bas	is And Is Not re	flected in the adju	isted value	es
COL	UMN DA	ATA	Unbraced Length	(ft)	Column End						
pan	le	ngth (ft)	X	Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (	V Axis)
1		17.25	17.25	1	0	0.21	1.00	1.00	37.64	6.8	
ΡΔς	S-FAIL										
173	5 TAIL		PASS/FAIL	MAG	GNITUDE	STRENGTH	LOCA	TION (ft)	LOAD COMBO	DURAT	ION FACTOR
	Shear S	Stress Y (psi)	PASS (95.7%)		13.4	310.0		17.25	D+L		1
	Bending S	tress Y (psi)	PASS (79.7%)		505.9	2486.4		8.62	D+L		1
	De	eflection (in)	PASS (53.9%)	0.530	) (=L/391)	1.150 (=L/180)		8.62	L		
С	ompressive	Stress (psi)	PASS (40.5%)		265.1	445.7		0	D+L		1
	Bearing	Stress (psi)	PASS (99.4%)		14.1	2170.0		0	D+L		1
Bendi	ng-Compre	ssion (Unit)	PASS (17.5%)		0.82	1.00		8.45	D+L		1
REA	CTIONS	Units for	V: lbf Units for M	lbf-ft							
axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
А	1052	1500	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0	0
axis											
Α	0	86	0	0	0	0	0	0	0	0	0
В	0	86	0	0	0	0	0	0	0	0	0

LOAD LIST						
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Point (lbf)	-1500	-	17.25	-	Live	Z
Point (lbf)	-1000	-	17.25	-	Dead	Z
Uniform (lbf/ft)	10	10	0	17.25	Live	Y
Self Weight (lbf/ft)	3.01	3.01	0	17.25	Dead	Z
Self Weight (lbf/ft)	3.01	3.01	0	17.25	Dead	Z

NOTES

Page 22



VITRUVIUS CUS PROJECT LOC	TOMER:	3/3/2021 StruCalc		COMPANY: DESIGNED BY: REVIEWED BY:	Man	Engineering & Desig s Thurfjell s Thurfjell	n, LLC
	LEVEL: CATION: TYPE: ATERIAL:	, Roof 2x6 Ballo COLUMN SOLID SA		LOADING: ind load <b>&amp;@De</b> : a NDS:			g Code
Hem-Fir	No	. 2	(1) 1.5 X 5.5	DRY			



	Area		lx	ly		BSW	Lan	ns	G		Kcr
	(in ² )		(in⁴)	(in⁴)		(lbf/ft)				Cr	eep Factor
	8.25		20.8	1.55		1.63	1		0.43		1
STR	ENGTH PI	ROPERTIE	S								
		Fb (psi)	Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	En	nin (psi) x10³
Base	e Values	850	525		150	1300		405	1300		470
djusted	l Values	1105	682		150	1430		405	1300		470
	с _М	1	1		1	1		1	1		1
	с _т	1	1		1	1		1	1		1
	c _i	1	1		1	1		1	1		1
	C _F	1.3	1.3		1	1.1		1	1		1
	g Adjustmen		C _{fu} = 1 C _r = 1								
COL	UMN DA	IA	Unbraced Length	(ft)	Column End						
Span	Len	gth (ft)	x	Ŷ	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (	Y Axis)
1		7.25	17.25	1	0	0.18	1.00	1.00	37.64	8	
PAS	S-FAIL	/									
			PASS/FAIL	MAG	SNITUDE	STRENGTH	LOCA	TION (ft)	LOAD COMBO	DURAT	ION FACTOR
	Shear St	ress Y (psi)	PASS (92.7%)		11.0	150.0		17.25	D+L		1
	Shear St Bending St	-	PASS (92.7%) PASS (62.4%)		11.0 413.1	150.0 1099.4		17.25 8.62	D+L D+L		1 1
	Bending St	-									1 1
C	Bending St	ress Y (psi) lection (in)	PASS (62.4%)	0.516	413.1	1099.4		8.62	D+L		1 1 1
C	Bending St Def Compressive S	ress Y (psi) lection (in)	PASS (62.4%) PASS (55.1%)	0.516	413.1 (=L/401)	1099.4 1.150 (=L/180)		8.62 8.62	D+L L		1 1 1 1
	Bending St Def Compressive S	ress Y (psi) lection (in) Stress (psi) Stress (psi)	PASS (62.4%) PASS (55.1%) PASS (49.9%)	0.516	413.1 (=L/401) I30.7	1099.4 1.150 (=L/180) 261.1		8.62 8.62 0	D+L L D+L		1
Bendi	Bending St Def Compressive S Bearing	ress Y (psi) lection (in) Stress (psi) Stress (psi)	PASS (62.4%) PASS (55.1%) PASS (49.9%) PASS (99.2%) PASS (4.3%)	0.516	413.1 (=L/401) 130.7 11.5	1099.4 1.150 (=L/180) 261.1 1430.0		8.62 8.62 0 0	D+L L D+L D+L		1 1 1 1
Bendi REA	Bending St Def Compressive Bearing ing-Compres	ress Y (psi) lection (in) Stress (psi) Stress (psi) sion (Unit)	PASS (62.4%) PASS (55.1%) PASS (49.9%) PASS (99.2%) PASS (4.3%)	0.516	413.1 (=L/401) 130.7 11.5	1099.4 1.150 (=L/180) 261.1 1430.0		8.62 8.62 0 0	D+L L D+L D+L	RAIN	1 1 1 1
Bendi REA	Bending St Def Compressive S Bearing S ing-Compress	ress Y (psi) lection (in) Stress (psi) Stress (psi) sion (Unit) Units for	PASS (62.4%) PASS (55.1%) PASS (49.9%) PASS (99.2%) PASS (4.3%)	0.516 - Ibf-ft	413.1 (=L/401) 130.7 11.5 0.96	1099.4 1.150 (=L/180) 261.1 1430.0 1.00		8.62 8.62 0 0 8.45	D+L L D+L D+L D+L	RAIN	1 1 1 1
Bendi REA Z axis	Bending St Def Compressive S Bearing S ing-Compres CTIONS DEAD	ress Y (psi) dection (in) Stress (psi) Stress (psi) sion (Unit) Units for LIVE	PASS (62.4%) PASS (55.1%) PASS (49.9%) PASS (99.2%) PASS (4.3%) V: lbf Units for M: LIVE ROOF	0.516 Julie - Julie -	413.1 (=L/401) I30.7 11.5 0.96 WIND +	1099.4 1.150 (=L/180) 261.1 1430.0 1.00 WIND -	SEISMIC +	8.62 8.62 0 0 8.45 SEISMIC -	D+L L D+L D+L D+L		1 1 1 1 EARTH
Bendi REA axis A B	Bending St Def Compressive S Bearing S ing-Compres CTIONS DEAD 528	ress Y (psi) dection (in) Stress (psi) Stress (psi) sion (Unit) Units for LIVE 550	PASS (62.4%) PASS (55.1%) PASS (49.9%) PASS (99.2%) PASS (4.3%) V: lbf Units for M: LIVE ROOF 0	lbf-ft SNOW	413.1 (=L/401) (30.7 11.5 0.96 WIND + 0	1099.4 1.150 (=L/180) 261.1 1430.0 1.00 WIND - 0	SEISMIC + 0	8.62 8.62 0 0 8.45 SEISMIC - 0	D+L L D+L D+L D+L ICE 0	0	1 1 1 1 EARTH 0
Bendi REA Z axis A	Bending St Def Compressive S Bearing S ing-Compres CTIONS DEAD 528	ress Y (psi) dection (in) Stress (psi) Stress (psi) sion (Unit) Units for LIVE 550	PASS (62.4%) PASS (55.1%) PASS (49.9%) PASS (99.2%) PASS (4.3%) V: lbf Units for M: LIVE ROOF 0	lbf-ft SNOW	413.1 (=L/401) (30.7 11.5 0.96 WIND + 0	1099.4 1.150 (=L/180) 261.1 1430.0 1.00 WIND - 0	SEISMIC + 0	8.62 8.62 0 0 8.45 SEISMIC - 0	D+L L D+L D+L D+L ICE 0	0	1 1 1 1 EARTH 0

Α

В

Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
-550	-	17.25	-	Live	Z
-500	-	17.25	-	Dead	Z
7	7	0	17.25	Live	Y
1.63	1.63	0	17.25	Dead	Z
	-550 -500 7	-550 - -500 - 7 7	-550 - 17.25 -500 - 17.25 7 7 0	-550         -         17.25         -           -500         -         17.25         -           7         7         0         17.25	-550         -         17.25         -         Live           -500         -         17.25         -         Dead           7         7         0         17.25         Live

NOTES

Page 24



VITRUVIU CUS PROJECT LO	STOMER:	3/3/2021 StruCalc		COMPANY: DESIGNED BY: REVIEWED BY:	Mar	) Engineering & Desig ns Thurfjell ns Thurfjell	ın, LLC
	TYPE:	COLUMN	-	NDS:		) 3a <b>pp<del>liedatao</del>dalBoxildia</b> 3 NDS	திரூde
Weyerhaeuser	1.55E Timbe	rStrand LSL	(1) 1.75 X 5.5	DRY			



	Area		lx	ly		BSW	Lan	าร	Cfn		Kcr
	(in²)		(in⁴)	(in ⁴ )		(lbf/ft)				Cr	eep Factor
	9.62		24.26	2.46		3.01	1		10.87		1
STRE	NGTH F	PROPERTIE									
		Fb (psi)	Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	En	nin (psi) x10 ³
	Values	2325	1290		310	2170		900	1550		787.815
ljusted		2325	1290		310	2170		900	1550		788
	с _М	1	1		1	1		1	1		1
	с _т	1	1		1	1		1	1		1
	Adjustme		C _V = 1.07 C _r = 1	Volur	me factor Is app	lied on a load co	mbination bas	is And Is Not re	flected in the adju	usted valu	es
COL	UMN DA	ATA	Unbraced Length	(ft)	Column End						
Span	Le	ngth (ft)	X	Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (	V Axis)
1		17.25	17.25	1	0	0.21	1.00	1.00	37.64	6.8	· · ·
PASS	S-FAIL										
		,	PASS/FAIL	MA	GNITUDE	STRENGTH	LOCA	TION (ft)	LOAD COMBO	DURAT	ION FACTOR
	Shear S	stress Y (psi)	PASS (97.0%)		9.4	310.0		17.25	D+L		1
	Bending S	tress Y (psi)	PASS (85.8%)		354.1	2486.4		8.62	D+L		1
	De	eflection (in)	PASS (67.7%)	0.37	1 (=L/558)	1.150 (=L/180)		8.62	L		
Co	ompressive	Stress (psi)	PASS (28.9%)		317.1	445.7		0	D+L		1
	Bearing	Stress (psi)	PASS (99.5%)		9.9	2170.0		0	D+L		1
Bendin	ng-Compre	ssion (Unit)	PASS (4.6%)		0.95	1.00		8.45	D+L		1
	CTIONS	Units for									
Z axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
Α	1052	2000	0	0	0	0	0	0	0	0	0
B axis	0	0	0	0	0	0	0	0	0	0	0
Α	0	60	0	0	0	0	0	0	0	0	0
в	0	60	0	0	0	0	0	0	0	0	0

Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
-1000	-	17.25	-	Dead	Z
-2000	-	17.25	-	Live	Z
7	7	0	17.25	Live	Y
3.01	3.01	0	17.25	Dead	Z
	-1000 -2000 7	-1000 - -2000 - 7 7 7	-1000 - 17.25 -2000 - 17.25 7 7 0	-1000         -         17.25         -           -2000         -         17.25         -           7         7         0         17.25	-1000         -         17.25         -         Dead           -2000         -         17.25         -         Live           7         7         0         17.25         Live

NOTES

Page 26



# Ledger Calculations



		PROJECT NO.	SHEET NO.
	PROJECT		
<b>LONGITUDE</b> ONE TWENTY [®] ENGINEERING & DESIGN	SUBJECT	DATE _	/ /

### Table 12.3.3A Assigned Specific Gravities

Species Combination	Specific ¹ Gravity, G	Species Combinations of MSR and MEL Lumber	Specific ¹ Gravity, G
Alaska Cedar	0.47	Douglas Fir-Larch	
Alaska Hemlock	0.46	E=1,900,000 psi and lower grades of MSR	0.50
Alaska Spruce	0.41	E=2,000,000 psi grades of MSR	0.51
Alaska Yellow Cedar	0.46	E=2,100,000 psi grades of MSR	0.52
Aspen BEAMS (DF #2, and Engineer	0.39	E=2,200,000 psi grades of MSR	0.53
Balsam Fir	0.36	E=2,300,000 psi grades of MSR	0.54
Beech-Birch-Hickory	0.71	E=2,400,000 psi grades of MSR	0.55
Coast Sitka Spruce	0.39	Douglas Fir-Larch (North)	
Cottonwood	0.41	E=1,900,000 psi and lower grades of MSR and MEL	0.49
Douglas Fir-Larch	0.50	E=2,000,000 psi to 2,200,000 psi grades of MSR and MEL	0.53
Douglas Fir-Larch (North)	0.49	E=2,300,000 psi and higher grades of MSR and MEL	0.57
Douglas Fir-South	0.46	Douglas Fir-Larch (South)	
Eastem Hemlock	0.41	E=1,000,000 psi and higher grades of MSR	0.46
Eastern Hemlock-Balsam Fir	0.36	Engelmann Spruce-Lodgepole Pine	
Eastern Hemlock-Tamarack	0.41	E=1,400,000 psi and lower grades of MSR	0.38
Eastern Hemlock-Tamarack (North)	0.47	E=1,500,000 psi and higher grades of MSR	0.46
Eastern Softwoods Joists and 2x members (HF	#2) 0.36	Hem-Fir	
Eastern Spruce	0.41	E=1,500,000 psi and lower grades of MSR	0.43
Eastern White Pine	0.36	E=1,600,000 psi grades of MSR	0.44
Engelmann Spruce-Lodgepole Pine	0.38	E=1,700,000 psi grades of MSR	0.45
Hem-Fir	0.43	E=1,800,000 psi grades of MSR	0.46
Hem-Fir (North)	0.46	E=1,900,000 psi grades of MSR	0.47
Mixed Maple	0.55	E=2,000,000 psi grades of MSR	0.48
Mixed Oak	0.68	E=2,100,000 psi grades of MSR	0.49
Mixed Southern Pine	0.51	E=2,200,000 psi grades of MSR	0.50
Mountain Hemlock	0.47	E=2,300,000 psi grades of MSR	0.51
Northern Pine	0.42	E=2,400,000 psi grades of MSR	0.52
Northern Red Oak	0.68	Hem-Fir (North)	
Northern Species	0.35	E=1,000,000 psi and higher grades of MSR and MEL	0.46
Northern White Cedar	0.31	Southern Pine	
Ponderosa Pine	0.43	E=1,700,000 psi and lower grades of MSR and MEL	0.55
Red Maple	0.58	E=1,800,000 psi and higher grades of MSR and MEL	0.57
Red Oak	0.67	Spruce-Pine-Fir	
Red Pine	0.44	E=1,700,000 psi and lower grades of MSR and MEL	0.42
Redwood, close grain	0.44	E=1,800,000 psi and 1,900,000 grades of MSR and MEL	0.46
Redwood, open grain	0.37	E=2,000,000 psi and higher grades of MSR and MEL	0.50
Sitka Spruce	0.43	Spruce-Pine-Fir (South)	
Southern Pine	0.55	E=1,100,000 psi and lower grades of MSR	0.36
Spruce-Pine-Fir	0.42	E=1,200,000 psi to1,900,000 psi grades of MSR	0.42
Spruce-Pine-Fir (South)	0.36	E=2,000,000 psi and higher grades of MSR	0.50
Western Cedars	0.36	Western Cedars	
Western Cedars (North)	0.35	E=1,000,000 psi and higher grades of MSR	0.36
Western Hemlock	0.47	Western Woods	
Western Hemlock (North)	0.46	E=1,000,000 psi and higher grades of MSR	0.36
Western White Pine	0.40		
Western Woods	0.36		
White Oak	0.73		
Yellow Poplar	0.43		

 Specific gravity, G, based on weight and volume when oven-dry. Different specific gravities, G, are possible for different grades of MSR and MEL lumber (see Table 4C, Footnote 2).

		PROJECT NO.	SHEET NO.
	PROJECT		
LONGITUDE	SUBJECT _		
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /

#### Table 12K LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections1,2,3,4

U,

								alues a he ma						assu	med	lengti	n of la				
Side Member Thickness	Lag Screw Diameter	G=0.67	Red Oak	G=0.55 Microit Mania	Southern Pine	G=0.5	Douglas Fir-Larch	G=0.49 Douclas Fir-Larch		G=0.46 Devotes FierCi	Hem-Fir(N)	G=0.43	Hem-Fir	G=0.42	Spruce-Pine-Fir	G=0.37 Bodunod	(open grain)	G=0.36 Eastern Softwoods	Western Woods	G=0.35	Northern Species
t,	D in.	Z _{II} Ibs.	Z ₁	Z _{II}	Z_	Z _{II}	Z ₁ Ibs.	Z _{II}	Z_	Z _{II}	Z_	Z _{II}	Z_	Z _{II} Ibs.	Z_	Z _{II}	ZL Ibs.	Z _{II}	Z ₁	Z _{II} Ibs.	
0.075	1/4	170	130	160	120	150	110	150	110	150	100	140	100	140	100	130	90	130	90	130	_
(14 gage)	5/16	220	160	200	140	190	130	190	130	190	130	180	120	180	120	170	110	170	110	160	
	3/8	220	160	200	140	200	130	190	130	190	120	180	120	180	120	170	110	170	100	170	
0.105	1/4	180	140	170	130	160	120	160	120	160	110	150	110	150	110	140	100	140	100	140	
(12 gage)	5/16	230	170	210	150	200	140	200	140	190	130	190	130	190	120	180	110	170	110	170	
	3/8	230	160	210	140	200	140	200	130	200	130	190	120	190	120	180	110	180	110	170	
0.120	1/4	190	150	180	130	170	120	170	120	160	120	160	110	160	110	150	100	150	100	140	
(11 gage)	5/16	230	170	210	150	210	140	200	140	200	140	190	130	190	130	180	120	180	120	180	
0.134	3/8	240 200	170 150	220 180	150 140	210 180	140 130	210	140 130	200	130 120	200	130	190	120	180 150	110	180 150	110	180 150	_
(10 gage)	5/16	200	150	220	140	210	150	210	140	200	120	200	120	200	130	190	120	150	120	150	
(To gage)	3/8	240	170	220	150	220	140	210	140	210	140	200	130	200	130	190	120	190	120	180	
0.179	1/4	220	170	210	150	200	150	200	140	190	140	190	130	190	130	180	120	170	120	170	-
(7 gage)	5/16	260	190	240	170	230	160	230	160	230	150	220	150	220	150	210	130	200	130	200	
(, Baße)	3/8	270	190	250	170	240	160	240	160	230	150	220	140	220	140	210	130	210	130	200	
0.239	1/4	240	180	220	160	210	150	210	150	200	140	190	140	190	130	180	120	180	120	180	-
(3 gage)	5/16	300	220	280	190	270	180	260	180	260	170	250	160	250	160	230	150	230	150	230	
	3/8	310	220	280	190	270	180	270	180	260	170	250	160	250	160	240	140	230	140	230	
	7/16	420	290	390	260	380	240	370	240	360	230	350	220	350	220	330	200	330	200	320	
	1/2	510	340	470	300	460	290	450	280	440	270	430	260	420	260	400	240	400	230	390	
	5/8	770	490	710	430	680	400	680	400	660	380	640	370	630	360	600	330	590	330	580	
	3/4	1110	670	1020	590	980	560	970	550	950	530	920	500	910	500	860	450	850	450	840	
	7/8	1510	880	1390	780	1330	730	1320	710	1280	690	1250	650	1230	650	1170	590	1160	590	1140	
	1	1940	1100	1780	960	1710	910	1700	890	1650	860	1600	820	1590	810	1500	740	1480	730	1460	
1/4	1/4	240	180	220	160	210	150	210	150	200	140	200	140	190	130	180	120	180	120	180	
	5/16	310	220	280	200	270	180	270	180	260	170	250	170	250	160	230	150	230	150	230	
	3/8	320 480	220 320	290 440	190	280 420	180	270 420	180 260	270 410	170 250	260 390	160 240	250 390	160 230	240 370	150 220	240	140 210	230	
	7/16	480	320	440 540	280 340	420 520	270 320	420 510	320	410 500	250 310	390 480	240	390 480	230	370 460	220	360 450	210	360 440	
	5/8	850	530	780	470	750	440	740	440	720	420	700	400	690	400	460	370	450	360	640	
	3/4	1200	730	1100	640	1060	600	1050	590	1020	570	990	540	980	530	930	490	920	480	900	-
	7/8	1600	930	1470	820	1410	770	1400	750	1360	720	1320	690	1310	680	1240	630	1220	620	1200	
	4	2040	1150	1870	1000	1800	950	1780	930	1730	900	1680	850	1660	840	1570	770	1550	760	1530	

1. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).

Tabulated lateral design values, Z, shall be intripried by an appreciate adjustment factors (see Table 11.5.1).
 Tabulated lateral design values, Z, are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 8D; dowel bearing strengths, F_e, of 61,850 psi for ASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths, F_{yin} of 70,000 psi for D = 1/4", 60,000 psi for D = 5/16", and 45,000 psi for D ≥3/8".
 Where the lag screw penetration, p, is less than 8D but not less than 4D, tabulated lateral design values, Z, shall be multiplied by p/8D or lateral design values.

shall be calculated using the provisions of 12.3 for the reduced penetration.
4. The length of lag screw penetration, p, not including the length of the tapered tip, E (see Appendix Table L2), of the lag screw into the main member shall not be less than 4D. See 12.1.4.6 for minimum length of penetration, p_{min}.

SDS connection of steel plate to wood, assuming HF, 100 lbs per 1/4" DIA SDS un-factored, without group action reduction, pending application/spacing.

	ר //		$\sqrt{1}$										
X	$\Box$		H	I	PROJ	ECT _							
)	١G	IT	UD	<u>E</u> :	SUBJ	ECT _							
			NTY ^o DESIGN	I	BY					[	DATE _	/	/
ble	12L			CREWS: R nber) Con			Design V	/alues, Z	for Sing	(le Shear	' <u> </u>		Ś
		f	for sawn l	umber or S d lateral de	CL with be	oth membe							0
29	9			ew penetra	tion, p, int	o the main					110000	19	8
Thickness	Wood Screw Diameter	Wood Screw Number	G≡0.67 Red Oak	G=0,55 Mixed Maple Southern Pine	G=0.5 Douglas Fir-Larch	G=0.49 Douglas Fir-Larch(N)	G=0.46 Douglas Fir(S) Hem-Fir(N)	G≐0.43 Hem-Fir	G=0.42 Spruce-Pine-Fir	G=0.37 Redwood (open grain)	G=0.36 Eastern Softwoods Spruce-Pine-Fir(S) Western Cedars Western Woods	G=0.35 Northern Species	SCR
t, in.	D in.		lbs.	Ibs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	
1/2	0.138	6 7	88 96	67 74	59 65	57 63	53 59	49 54	47 52	41 45	40 44	38 42	EW
	0.164	8 9 10	107 121 130	82 94 101	73 83 90	71 81 87	66 76 82	61 70 75	59 68 73	51 59 64	50 58 63	48 56 60	0
-	0.216		156	123	110 120	107 117	100 110	93 102	91 99	79	78 86	75 83	
5/8	0.138	6 7	94 104	76 83	66 72	64 70	59 64	53 58	52 56	44 48	43 47	41 45	
	0.164	8 9	120 136	92 103	80 91	77 88	72 81	65 74	63 72	54 62	53 61	51 58	
	0.190	10	146 173	111 133	97 117	94 114	88 106	80 97	78 95	67 82	65 80	63 77	
3/4	0.242	14	184	142	126	123	115	106	103 57	89	87	84	-
-	0.151	7	104 120	87 101	80 88	77 85	71 78	64 71	62 69	52 58	50 56	48 54	DOV
	0.177	9	142	114	99 107	96 103	88 95	80 86	78 83	66 71	64 69	61 66	VEL
pical L	10.000	10 Con 100	190109	actored since typ	1000000	2012/02/04	5-05-05-0	03	100	86	84	80	-1
8) SDS\ 0.c w/	N screws 60 psf LL	into RI and 10	M @ 12" o.c s psf DL - loadi	tud. Assuming wo	orst case with ⁻ ection, stagger	12' deck framing ed, (and ignorin	with connection g capacity of typi	s into ical	108 61	93 55	91 54	87 51	WEL-TYPE FASTENERS
	nnection i	s 6' x 72	2 psf x 1.00 =	432# versus cap	acity into DF/E	Engineered lumb	oer (LSL) - 489#,	ok. 19	68 78	60 67	59 65	56 62	FA
	0.177	10	142 153	118 128	108 117	106 114	100 108	94 101	90 97	75 81	73 78	70 75	STE
ź	0.216		193 213	161 178	147 157	143	131	118	114	96 102	93	89 95	NE
-1/4	0.138	6 7	94 104	79 87	72 80	71 78	67 74	63 69	61 68	55 60	54 59	52 57	RS
	0.164	8 9	120	101 118	92 108	90 106	85 100	80 94	78 92	70 82	68 80	66 78	
	0.190	10	153	128	117	114	108	101	99	88	87	84	1.
	0.216 0.242 0.138	14	193 213	161 178	147 163	144 159	137 151	128 141	125 138	108 115	105 111	100	
			94	79	72	71	67	63	61	55	54	52	

0.164

0 190 

0.216 

0.242 

0.138 

0.151 

0.164 

0.177 

0.190 

0.216 

0.242 

1-3/4

0.177 

Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
 Tabulated lateral design values, Z, are for rolled thread wood screws (see Appendix Table L3) inserted in side gaain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 10D; and screw bending yield strengths, F_{ybs} of 100,000 psi for 0.099" ≤ D ≤ 0.142", 90,000 psi for 0.142" < D ≤ 0.177", 80,000 psi for 0.177" < D ≤ 0.236", and 70,000 psi for 0.236" < D ≤ 0.273".</li>
 Where the wood screw penetration, p, its less than 10D but not less than 6D, tabulated lateral design values, Z, shall be multiplied by p/10D or lateral design values.

shall be calculated using the provisions of 12.3 for the reduced penetration.

Interior: Typical Ledger connection w/ SDS, un-factored since typical floor loading application with duration = 1. Minimum (3) SDSW screws into studs/rim @ 16" o.c stud. Assuming worst case with 14' floor framing with connections into RIM @ 16" o.c w/ 40 psf LL and 12 psf DL - loading on each connection, staggered, (and ignoring capacity of typical nailing of rim). Connection is 7' x 52 psf x 1.00 = 364# versus capacity into HF lumber (SS) - 423#, ok.

	PROJECT NO.	SHEET NO.
PROJECT		
SUBJECT		
BY	DATE _	/ /
	SUBJECT	PROJECT

Table 12.2A	Lag Screw Reference	e Withdrawal Des	ign Values, W ¹

Tabulated withdrawal design values (W) are in pounds per inch of thread penetration into side grain of wood member. Length of thread penetration in main member shall not include the length of the tapered tip (see 12.2.1.1).

Specific Gravity,	Lag Screw Diameter, D													
G ²	1/4"	5/16"	3/8"	7/16"	1/2"	5/8"	3/4"	7/8"	1"	1-1/8"	1-1/4"			
0.73	397	469	538	604	668	789	905	1016	1123	1226	1327			
0.71	381	450	516	579	640	757	868	974	1077	1176	1273			
0.68	357	422	484	543	600	709	813	913	1009	1103	1193			
0.67	349	413	473	531	587	694	796	893	987	1078	1167			
0.58	281	332	381	428	473	559	641	719	795	869	940			
0.55	260	307	352	395	437	516	592	664	734	802	868			
0.51	232	274	314	353	390	461	528	593	656	716	775			
0.50	225	266	305	342	378	447	513	576	636	695	752			
0.49	218	258	296	332	367	434	498	559	617	674	730			
0.47	205	242	278	312	345	408	467	525	580	634	686			
0.46	199	235	269	302	334	395	453	508	562	613	664			
0.44	186	220	252	283	312	369	423	475	525	574	621			
0.43	179	212	243	273	302	357	409	459	508	554	600			
0.42	173	205	235	264	291	344	395	443	490	535	579			
0.41	167	198	226	254	281	332	381	428	473	516	559			
0.40	161	190	218	245	271	320	367	412	455	497	538			
0.39	155	183	210	236	261	308	353	397	438	479	518			
0.38	149	176	202	227	251	296	340	381	422	461	498			
0.37	143	169	194	218	241	285	326	367	405	443	479			
0.36	137	163	186	209	231	273	313	352	389	425	460			
0.35	132	156	179	200	222	262	300	337	373	407	441			
0.31	110	130	149	167	185	218	250	281	311	339	367			

Tabulated withdrawal design values, W, for lag screw connections shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
 Specific gravity, G, shall be determined in accordance with Table 12.3.3A.

12.2.3.2 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of fastener penetration from 12.2.3.1 shall be multiplied by the length of fastener penetration,  $p_{t_s}$  into the wood member.

12.2.3.3 The reference withdrawal design value, in lbs/in. of penetration, for a single post-frame ring shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2D or Equation 12.2-4, within the range of specific gravities and nail diameters given in Table 12.2D. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'. 12.2.3.4 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of ring shank penetration from 12.2.3.3 shall be multiplied by the length of ring shank penetration,  $p_b$  into the wood member. 12.2.3.5 Nails and spikes shall not be loaded in

withdrawal from end grain of wood ( $C_{eg}$ =0.0).

12.2.3.6 Nails, and spikes shall not be loaded in withdrawal from end-grain of laminations in cross-laminated timber ( $C_{eg}$ =0.0).

#### **12.2.4 Drift Bolts and Drift Pins**

Reference withdrawal design values, W, for connections using drift bolt and drift pin connections shall be determined in accordance with 11.1.1.3.

W = 180	0 G ² D	(12.2-4)	De t
	Ledger withdrawal capacity - a embed (tip discounted) into S 3 = 805# per 16" of ledger cor	S/HF material = 179# :	x 1.5 x

**DOWEL-TYPE FASTENERS** 

ON		/EN	TΥ	10	SUB	JECT						/	HEET NO.
	Table 1	2M	(tr for (ta	wo memb or sawn lun abulated la	ber) Conn nber or SCI ateral desi	L with AST	, <b>2,3</b> M 653, Gr are calcul	<b>Design Va</b> rade 33 sto lated base nember eq	eel side pl d on an as	late ssumed ler			
<b>WOOD SCREW</b>	Side Member Thickness	Wood Screw Diameter	Wood Screw Number	G=0.67 Red Oak	G=0.55 Mixed Maple Southern Pine	G=0.5 Douglas Fir-Larch	G=0.49 Douglas Fir-Larch(N)	G=0.46 Douglas Fir(S) Hem-Fir(N)	G=0.43 Hem-Fir	G=0.42 Spruce-Pine-Fir	G=0.37 Redwood (open grain)	G=0.36 Eastern Softwoods Spruce-Pine-Fir(S) Western Cedars Western Woods	G≡0.35 Northern Species
00	t _s in. 0.036 (20 gage) 0.048	D in. 0.138 0.151 0.164 0.138	7 8	lbs. 89 99 113 90	lbs. 76 84 97 77	lbs. 70 78 89 71	lbs. 69 76 87 70	lbs. 66 72 83 67	lbs. 62 68 78 63	lbs. 60 67 77 61	lbs. 54 60 69 55	lbs. 53 59 67 54	bs. 52 57 66 53
	(18 gage) 0.060 (16 gage)	0.151 0.164 0.138 0.151 0.164	7 8 6 7 8	100 114 92 101 116	85 98 79 87 100	79 90 73 81 92	77 89 72 79 90	74 84 68 75 86	69 79 64 71 81	68 78 63 70 79	61 70 57 63 71	60 69 56 61 70	58 67 54 60 68
	0.075 (14 gage)	0.177 0.190 0.138 0.151 0.164 0.177 0.190 0.216	10 6 7 8 9 10	136 146 95 105 119 139 150 186	116 125 82 90 103 119 128 159	107 116 76 84 95 110 119 147	105 114 75 82 93 108 117 145	100 108 71 78 89 103 111 138	94 102 67 74 84 97 105 130	93 100 66 72 82 95 103 127	83 90 59 65 74 86 92 114	82 88 58 64 73 84 91 112	79 86 57 62 71 82 88 109
	0.105 (12 gage)	0.242 0.138 0.151 0.164 0.177 0.190	14 6 7 8 9 10	204 104 114 129 148 160	175 90 99 111 128 138	162 84 92 103 119 128	158 82 90 102 116 125	151 79 86 97 111 120	142 74 81 92 105 113	139 73 80 90 103 111	125 66 72 81 93 100	123 65 71 80 91 98	120 63 69 77 89 96
	0.120 (11 gage)	0.216 0.242 0.138 0.151 0.164 0.177 0.190 0.216 0.242	14 6 7 8 9 10 12	196 213 110 120 135 154 166 202 219	168 183 95 104 117 133 144 174 189	156 170 89 97 109 124 133 162 175	153 167 87 95 107 121 131 159 172	146 159 83 91 102 116 125 152 164	138 150 79 86 96 110 118 143 155	135 147 77 84 94 107 116 140 152	122 132 70 76 85 97 104 126 137	120 130 68 75 84 95 103 124 134	116 126 67 73 82 93 100 121 131
	0.134 (10 gage)	0.138 0.151 0.164 0.177 0.190 0.216	6 7 8 9 10 12	116 126 141 160 173 209	100 110 122 139 149 180	93 102 114 129 139 167	92 100 112 127 136 164	88 96 107 121 130 157	83 91 101 114 123 148	81 89 99 112 121 145	73 80 89 101 109 131	72 79 88 100 107 129	70 77 86 97 104 126
	0.179 (7 gage)	0.242 0.138 0.151 0.164 0.177 0.190	6 7 8 9 10	226 126 139 160 184 198	195 107 118 136 160 172	181 99 109 126 148 159	177 97 107 123 145 156	169 92 102 117 138 149	160 86 95 110 129 140	157 84 93 108 127 137	141 76 84 96 113 122	139 74 82 95 111 120	135 72 80 92 108 117
	0.239 (3 gage)	0.216 0.242 0.138 0.151 0.164 0.177 0.190 0.216 0.242	14 6 7 8 9 10 12	234 251 126 139 160 188 204 256 283	203 217 107 118 136 160 173 218 241	189 202 99 109 126 148 159 201 222	186 198 97 107 123 145 156 197 217	178 190 92 102 117 138 149 187 207	168 179 86 95 110 129 140 176 194	165 176 84 93 108 127 137 172 190	149 159 76 84 96 113 122 154 170	146 156 74 82 95 111 120 151 167	143 152 72 80 92 108 117 147 162

Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.5.1).
 Tabulated lateral design values, Z, are for rolled thread wood screws (see Appendix L) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 10D; dowel bearing strength, F_s, of 61,850 psi for ASTM A653, Grade 33 steel and screw bending yield strengths, F_s, of 100,000 psi for 0.099" ≤ D ≤ 0.142", 90,000 psi for 0.142" < D ≤ 0.177", 80,000 psi for 0.177" < D ≤ 0.236", 70,000 psi for 0.236" < D ≤ 0.273".</li>
 Where the wood screw penetration, p, is less than 10D but not less than 6D, tabulated lateral design values, Z, shall be multiplied by p/10D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration.

							_				JECT I	NO.	SHE	ET N
				_										
					SUB	JECT								
NGINEE					BY _						_ D/	ATE	/	/
Table 1 (Cont.)		Val for s (tab	ues, sawr oulat	, Z, for S n lumber ed later	<b>C, or SINK</b> <b>Single Sh</b> or SCL wi al design nto the ma	ith ASTM values are	member 653, Grad e calculat	r) Connec le 33 stee ed based	ctions ^{1,2,3} el side pla	ite				NAILS
Side Member Thickness	Nail Diameter	Common Wire Nail Box Nail	Sinker Nail	G=0.67 Red Oak	G=0.55 Mixed Maple Southern Pine	G=0.5 Douglas Fir-Larch	G=0.49 Douglas Fir-Larch (N)	G=0.46 Douglas Fir(S) Hem-Fir(N)	G=0.43 Hem-Fir	G=0.42 Spruce-Pine-Fir	G=0.37 Redwood (open grain)	G=0.36 Eastern Softwoods Spruce-Pine-Fir(S) Western Cedans Western Woods	G=0.35 Northern Species	. 01
t, in. 0.120	D in. 0.099	Pennywei 6d	ght 7d	ibs. 90	lbs. 78	lbs. 72	lbs. 71	lbs.	lbs. 64	lbs. 63	lbs. 57	lbs. 56	Ibs. 53	925
(11 gage)	0.113	6d 8d	8d 10d	110 121	95 105	89 97	87 96	83 91	79 86	77 85	70 76	68 75	66 73	
	0.128 0.131 0.135	10d 8d 16d	12d	134 140 147	116 121 127	108 112 118	106 110 116	101 105 110	96 99 104	94 97 102	85 88 92	83 86 91	81 84 88	
	0.148	16d 40d	16d	165 193 218	143 166 188	133 154 174	130 152 171	124 145 163	117 137 154	115 134 151	104 121 136	102 119 134	99 115 130	
	0.192	20d 30d	30d 40d	226 244	195 210	181 194	177 191	169 182	159 172	156 168	141 151	138 149	135 145	ř.
0.134	0.225	50d	60d	265 272 95	228 234 82	211 217 76	207 213 74	198 203 71	186 191 66	183 187 65	164 169 58	161 166 56	157 161 54	-13
(10 gage)	0.113	6d 8d	8d 10d	116 127	100 110	93 102	92 100	88 96	83 91	81 89	73 80	72 79	69 76	_
	0.128 0.131 0.135	8d	12d	140 146 153	122 126 132	113 117 123	111 115 121	106 110 115	100 104 109	98 102 107	89 92 96	87 90 95	85 88 92	DOW
	0.148	16d 40d	16d	172 199	148 172 194	138 160 180	135 157	129 150	122 142 159	120 139	108 125	106 123	104 120	E
	0.177 0.192 0.207	20d	20d 30d 40d	224 232 249	200 215	186	176 182 196	169 174 187	164 176	156 161 173	141 145 156	138 143 153	135 139 149	WEL-TYPE FASTENERS
0.179	0.225 0.244 0.099	50d	60d 7d	270 277 97	233 239 82	216 221 76	212 217 74	202 207 71	191 195 66	187 192 65	168 173 58	165 170 56	161 165 54	FAS
(7 gage)	0.113	6d 8d	8d 10d	126 142	107 121	99 111	97 109	92 104	86 97	84 95	76 85	74 83	70 79	TEN
	0.128 0.131 0.135	10d 8d 16d	12d	161 168 175	137 144 152	126 132 141	124 130 138	118 123 131	111 116 123	108 114 121	97 102 108	94 99 105	90 94 100	ERS
	0.148	10d 20d 16d 40d	16d	195 224	170 194	158 180	155 177	148 169	140 160	137 157	123 142	121 140	117 136	
	0.177 0.192 0.207	20d	20d 30d 40d	249 256 272	215 222 236	200 206 219	197 203 215	188 194 205	178 183 194	174 179 190	157 162 172	155 159 169	151 155 164	12
	0.225	40d 50d	60d	292 299	252 258	234 240	230 235	220 225	207 212	203 208	184 188	180 185	176 180	en R
0.239 (3 gage)	0.099 0.113 0.120	6d 8d	7d 8d 10d	97 126 142	82 107 121	76 99 111	74 97 109	71 92 104	66 86 97	65 84 95	58 76 85	56 74 83	54 70 79	
	0.128	10d 8d		161 169	137 144	126 132	124 130	118 123	111 116	108 114	97 102	94 99	90 94	
		16d 10d 20d 16d 40d		180 205 245	153 174 209	141 160 192	138 157 188	131 149 179	123 140 168	121 137 165	108 123 147	105 121 145	100 117 140	i i
	0.162		20d	284	209 241 251	222	218 227	207	195	191	170	167 174	162 169	
	0.192		30d	295 310	270	251	246	236	222	217	194	191	185	

Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
 Tabulated lateral design values, Z, are for common, box, or sinker steel wire nails (see Appendix Table L4) inserted in side grain with nail axis perpendicular to wood fibers; nail penetration, p, into the main member equal to 10D; dowel bearing strength, F, of 61.850 psi for ASTM A653, Grade 33 steel and nail bending yield strengths, F, so of 100,000 psi for 0.099" ≤ D ≤ 0.142", 90,000 psi for 0.142" < D ≤ 0.177", 80,000 psi for 0.177" < D ≤ 0.236", 70,000 psi for 0.236" < D ≤ 0.273".</li>
 Where the nail or spike penetration, p, is less than 10D but not less than 6D, tabulated lateral design values, Z, shall be multiplied by p/10D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration.

		PROJECT NO.	SHEET NO.
	PROJECT		
LONGITUDE	SUBJECT		
ONE TWENTY [®] ENGINEERING & DESIGN	BY	 DATE _	/ /

#### Table 11.3.6A Group Action Factors, Cg[,] for Bolt or Lag Screw Connections with Wood Side Members²

			Fo	or <b>D</b> = 1	<b>"</b> , <b>s</b> = 4	4", E =	1,400,0	00 psi				
$A_s/A_m^{-1}$	A		_		Nu	mber of	fasten	ers in a	row	_		
	in. ²	2	3	4	5	6	7	8	9	10	11	12
0.5	5	0.98	0.92	0.84	0.75	0.68	0.61	0.55	0.50	0.45	0.41	0.38
	12	0.99	0.96	0.92	0.87	0.81	0.76	0.70	0.65	0.61	0.57	0.53
	20	0.99	0.98	0.95	0.91	0.87	0.83	0.78	0.74	0.70	0.66	0.62
	28	1.00	0.98	0.96	0.93	0.90	0.87	0.83	0.79	0.76	0.72	0.69
	40	1.00	0.99	0.97	0.95	0.93	0.90	0.87	0.84	0.81	0.78	0.75
	64	1.00	0.99	0.98	0.97	0.95	0.93	0.91	0.89	0.87	0.84	0.82
1	5	1.00	0.97	0.91	0.85	0.78	0.71	0.64	0.59	0.54	0.49	0.45
	12	1.00	0.99	0.96	0.93	0.88	0.84	0.79	0.74	0.70	0.65	0.61
	20	1.00	0.99	0.98	0.95	0.92	0.89	0.86	0.82	0.78	0.75	0.71
	28	1.00	0.99	0.98	0.97	0.94	0.92	0.89	0.86	0.83	0.80	0.77
	40	1.00	1.00	0.99	0.98	0.96	0.94	0.92	0.90	0.87	0.85	0.82
	64	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.93	0.91	0.90	0.88
1. Where A/	$A_{m} > 1.0, u$	ise A _m /A _s	and use A,	" instead o	f A _s .							

2. Tabulated group action factors (Cg) are conservative for  $D \le 1$ ",  $s \le 4$ ", or  $E \ge 1,400,000$  psi.

#### Table 11.3.6B Group Action Factors, Cg, for 4" Split Ring or Shear Plate Connectors with Wood Side Members²

				s =	9", E =	= 1,400,	000 psi					
$A_s/A_m^{-1}$	A _s ¹				Nu	mber of	f fasten	ers in a	row			
	in. ²	2	3	4	5	6	7	8	9	10	11	12
0.5	5	0.90	0.73	0.59	0.48	0.41	0.35	0.31	0.27	0.25	0.22	0.20
	12	0.95	0.83	0.71	0.60	0.52	0.45	0.40	0.36	0.32	0.29	0.27
	20	0.97	0.88	0.78	0.69	0.60	0.53	0.47	0.43	0.39	0.35	0.32
	28	0.97	0.91	0.82	0.74	0.66	0.59	0.53	0.48	0.44	0.40	0.37
	40	0.98	0.93	0.86	0.79	0.72	0.65	0.59	0.54	0.49	0.45	0.42
	64	0.99	0.95	0.91	0.85	0.79	0.73	0.67	0.62	0.58	0.54	0.50
1	5	1.00	0.87	0.72	0.59	0.50	0.43	0.38	0.34	0.30	0.28	0.25
	12	1.00	0.93	0.83	0.72	0.63	0.55	0.48	0.43	0.39	0.36	0.33
	20	1.00	0.95	0.88	0.79	0.71	0.63	0.57	0.51	0.46	0.42	0.39
	28	1.00	0.97	0.91	0.83	0.76	0.69	0.62	0.57	0.52	0.47	0.44
	40	1.00	0.98	0.93	0.87	0.81	0.75	0.69	0.63	0.58	0.54	0.50
	64	1.00	0.98	0.95	0.91	0.87	0.82	0.77	0.72	0.67	0.62	0.58

1. Where  $A_y/A_m > 1.0$ , use  $A_m/A_s$  and use  $A_m$  instead of  $A_s$ .

2. Tabulated group action factors ( $C_8$ ) are conservative for 2-1/2" split ring connectors, 2-5/8" shear plate connectors, s < 9", or E > 1,400,000 psi.

		PROJECT NO.	SHEET NO.
<b>LONGITUDE</b> ONE TWENTY [®] ENGINEERING & DESIGN	SUBJECT	DATE _	/ /

	F	or D =	1", s =	4", E.	_{ood} = 1,4	400,000	psi, E,	teel = 30	,000,00	0 psi		
A _m /A _s	Am			,		mber of	-					
	in. ²	2	3	4	5	6	7	8	9	10	11	12
12	5	0.97	0.89	0.80	0.70	0.62	0.55	0.49	0.44	0.40	0.37	0.34
	8	0.98	0.93	0.85	0.77	0.70	0.63	0.57	0.52	0.47	0.43	0.40
	16	0.99	0.96	0.92	0.86	0.80	0.75	0.69	0.64	0.60	0.55	0.52
	24	0.99	0.97	0.94	0.90	0.85	0.81	0.76	0.71	0.67	0.63	0.59
	40	1.00	0.98	0.96	0.94	0.90	0.87	0.83	0.79	0.76	0.72	0.69
	64	1.00	0.99	0.98	0.96	0.94	0.91	0.88	0.86	0.83	0.80	0.77
	120	1.00	0.99	0.99	0.98	0.96	0.95	0.93	0.91	0.90	0.87	0.85
	200	1.00	1.00	0.99	0.99	0.98	0.97	0.96	0.95	0.93	0.92	0.90
18	5	0.99	0.93	0.85	0.76	0.68	0.61	0.54	0.49	0.44	0.41	0.37
	8	0.99	0.95	0.90	0.83	0.75	0.69	0.62	0.57	0.52	0.48	0.44
	16	1.00	0.98	0.94	0.90	0.85	0.79	0.74	0.69	0.65	0.60	0.56
	24	1.00	0.98	0.96	0.93	0.89	0.85	0.80	0.76	0.72	0.68	0.64
	40	1.00	0.99	0.97	0.95	0.93	0.90	0.87	0.83	0.80	0.77	0.73
	64	1.00	0.99	0.98	0.97	0.95	0.93	0.91	0.89	0.86	0.83	0.81
	120	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.93	0.92	0.90	0.88
	200	1.00	1.00	0.99	0.99	0.98	0.98	0.97	0.96	0.95	0.94	0.92
24	40	1.00	0.99	0.97	0.95	0.93	0.89	0.86	0.83	0.79	0.76	0.72
	64	1.00	0.99	0.98	0.97	0.95	0.93	0.91	0.88	0.85	0.83	0.80
	120	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.93	0.91	0.90	0.88
	200	1.00	1.00	0.99	0.99	0.98	0.98	0.97	0.96	0.95	0.93	0.92
30	40	1.00	0.98	0.96	0.93	0.89	0.85	0.81	0.77	0.73	0.69	0.65
	64	1.00	0.99	0.97	0.95	0.93	0.90	0.87	0.83	0.80	0.77	0.73
	120	1.00	0.99	0.99	0.97	0.96	0.94	0.92	0.90	0.88	0.85	0.83
	200	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.94	0.92	0.90	0.89
35	40	0.99	0.97	0.94	0.91	0.86	0.82	0.77	0.73	0.68	0.64	0.60
	64	1.00	0.98	0.96	0.94	0.91	0.87	0.84	0.80	0.76	0.73	0.69
	120	1.00	0.99	0.98	0.97	0.95	0.92	0.90	0.88	0.85	0.82	0.79
	200	1.00	0.99	0.99	0.98	0.97	0.95	0.94	0.92	0.90	0.88	0.86
42	40	0.99	0.97	0.93	0.88	0.83	0.78	0.73	0.68	0.63	0.59	0.55
	64	0.99	0.98	0.95	0.92	0.88	0.84	0.80	0.76	0.72	0.68	0.64
	120	1.00	0.99	0.97	0.95	0.93	0.90	0.88	0.85	0.81	0.78	0.75
	200	1.00	0.99	0.98	0.97	0.96	0.94	0.92	0.90	0.88	0.85	0.83
50	40	0.99	0.96	0.91	0.85	0.79	0.74	0.68	0.63	0.58	0.54	0.51
	64	0.99	0.97	0.94	0.90	0.85	0.81	0.76	0.72	0.67	0.63	0.59
	120	1.00	0.98	0.97	0.94	0.91	0.88	0.85	0.81	0.78	0.74	0.71
	200	1.00	0.99	0.98	0.96	0.95	0.92	0.90	0.87	0.85	0.82	0.7

		PROJECT NO.	SHEET NO.
	PROJECT		
LONGITUDE	SUBJECT		
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /

		S =	= 9", E	wood = 1	,400,00	0 psi, E	$C_{\text{steel}} = 3$	0,000,0	00 psi			
A _m /A _s	Am					mber of	f fasten	ers in a	row			
	in. ²	2	3	4	5	6	7	8	9	10	11	12
12	5	0.91	0.75	0.60	0.50	0.42	0.36	0.31	0.28	0.25	0.23	0.21
	8	0.94	0.80	0.67	0.56	0.47	0.41	0.36	0.32	0.29	0.26	0.24
	16	0.96	0.87	0.76	0.66	0.58	0.51	0.45	0.40	0.37	0.33	0.31
	24	0.97	0.90	0.82	0.73	0.64	0.57	0.51	0.46	0.42	0.39	0.35
	40	0.98	0.94	0.87	0.80	0.73	0.66	0.60	0.55	0.50	0.46	0.43
	64	0.99	0.96	0.91	0.86	0.80	0.74	0.69	0.63	0.59	0.55	0.51
	120	0.99	0.98	0.95	0.91	0.87	0.83	0.79	0.74	0.70	0.66	0.63
	200	1.00	0.99	0.97	0.95	0.92	0.89	0.85	0.82	0.79	0.75	0.72
18	5	0.97	0.83	0.68	0.56	0.47	0.41	0.36	0.32	0.28	0.26	0.24
	8	0.98	0.87	0.74	0.62	0.53	0.46	0.40	0.36	0.32	0.30	0.27
	16	0.99	0.92	0.82	0.73	0.64	0.56	0.50	0.45	0.41	0.37	0.34
	24	0.99	0.94	0.87	0.78	0.70	0.63	0.57	0.51	0.47	0.43	0.39
	40	0.99	0.96	0.91	0.85	0.78	0.72	0.66	0.60	0.55	0.51	0.47
	64	1.00	0.97	0.94	0.89	0.84	0.79	0.74	0.69	0.64	0.60	0.56
	120	1.00	0.99	0.97	0.94	0.90	0.87	0.83	0.79	0.75	0.71	0.67
	200	1.00	0.99	0.98	0.96	0.94	0.91	0.89	0.86	0.82	0.79	0.76
24	40	1.00	0.96	0.91	0.84	0.77	0.71	0.65	0.59	0.54	0.50	0.46
	64	1.00	0.98	0.94	0.89	0.84	0.78	0.73	0.68	0.63	0.58	0.54
	120	1.00	0.99	0.96	0.94	0.90	0.86	0.82	0.78	0.74	0.70	0.66
	200	1.00	0.99	0.98	0.96	0.94	0.91	0.88	0.85	0.82	0.78	0.75
30	40	0.99	0.93	0.86	0.78	0.70	0.63	0.57	0.52	0.47	0.43	0.40
	64	0.99	0.96	0.90	0.84	0.78	0.71	0.66	0.60	0.56	0.51	0.48
	120	0.99	0.98	0.94	0.90	0.86	0.81	0.76	0.71	0.67	0.63	0.59
	200	1.00	0.98	0.96	0.94	0.91	0.87	0.83	0.79	0.76	0.72	0.68
35	40	0.98	0.91	0.83	0.74	0.66	0.59	0.53	0.48	0.43	0.40	0.36
	64	0.99	0.94	0.88	0.81	0.73	0.67	0.61	0.56	0.51	0.47	0.43
	120	0.99	0.97	0.93	0.88	0.82	0.77	0.72	0.67	0.62	0.58	0.54
	200	1.00	0.98	0.95	0.92	0.88	0.84	0.80	0.76	0.71	0.68	0.64
42	40	0.97	0.88	0.79	0.69	0.61	0.54	0.48	0.43	0.39	0.36	0.33
	64	0.98	0.92	0.84	0.76	0.69	0.62	0.56	0.51	0.46	0.42	0.39
	120	0.99	0.95	0.90	0.85	0.78	0.72	0.67	0.62	0.57	0.53	0.49
	200	0.99	0.97	0.94	0.90	0.85	0.80	0.76	0.71	0.67	0.62	0.59
50	40	0.95	0.86	0.75	0.65	0.56	0.49	0.44	0.39	0.35	0.32	0.30
	64	0.97	0.90	0.81	0.72	0.64	0.57	0.51	0.46	0.42	0.38	0.35
	120	0.98	0.94	0.88	0.81	0.74	0.68	0.62	0.57	0.52	0.48	0.45
	200	0.99	0.96	0.92	0.87	0.82	0.77	0.71	0.66	0.62	0.58	0.5



# TYPICAL POSTS



	DATE:	3/3/2021		COMPANY:		Engineering & Desig	ın, LLC	
VITRUVIUS		StruCalc		DESIGNED BY:	Mans Thurfjell			
	STOMER:			REVIEWED BY:	Man	is Thurfjell		
PROJECT LOC	CATION:							
		,						
	LEVEL: Roof			LOADING:	ASD	)		
LO	LOCATION: 2X4 ST		0 @ 16"	CODE:	2018	8 International Buildin	ng Code	
	TYPE: COLU			NDS:	NDS: 2018 NDS			
MA	ATERIAL:	SOLID SA	WN					
Hem-Fir	No	. 2	(1) 1.5 X 3.5	DRY				

2X4 STUD @ 16" DIAGRAM



	Area		lx	ly		BSW	Lan	าร	G		Kcr
	(in²)		(in ⁴ )	(in⁴)		(lbf/ft)				Cr	eep Factor
	5.25		5.36	0.98		1.04	1		0.43		1
STRE	ENGTH PR	OPERTIE	S								
		Fb (psi)	Ft (ps	)	Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	En	nin (psi) x10³
	Values	850	525		150	1300		405	1300		470
djusted		1275	788		150	1495		405	1300		470
	с _М	1	1		1	1		1	1		1
	с _т	1	1		1	1		1	1		1
	с _і	1	1		1	1		1	1		1
	C _F	1.5	1.5		1	1.15		1	1		1
	g Adjustment I		C _{fu} = 1 C _r = 1								
COL	UMN DAT	A	Unbraced Lengt	h (ft)	Column End						
pan	Lengt	:h (ft)	x	Ŷ	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (	Y Axis)
1			8	4	0	0.24	1.00	1.00	27.43	3	
PAS	S-FAIL										
			PASS/FAIL	MAG	GNITUDE	STRENGTH	LOCA	TION (ft)	LOAD COMBO	DURAT	ION FACTOR
	Defle	ction (in)	PASS (90.5%)	0.025	(=L/3795)	0.267 (=L/360)		8	L		
C	ompressive St	ress (psi)	PASS (3.0%)	3	344.4	355.2		0	D+L		1
REA	CTIONS	Units for	V: lbf Units for N	1: lbf-ft							
axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
А	8	1800	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0	0
eactior	n Location										
A											
LOA	D LIST										
	Туре	Left	t Magnitude	Right Mag	nitude	Load Start (ft)	Load	End (ft)	Load Type		Direction
	oint (lbf)		-1800	-		8		-	Live		Z
P								8			z

VITRUVIUS CUS PROJECT LOC	TOMER:	10/8/2020 StruCalc		COMPANY: DESIGNED BY: REVIEWED BY:	Man	) Engineering & Desig Is Thurfjell Is Thurfjell	n, LLC
	LEVEL:	Main Floo	or	LOADING:	ASD	1	
LOC	CATION:	2x4 @ 12'	' O.C.	CODE:	2018	<b>3 International Buildin</b>	ig Code
	TYPE:	COLUMN		NDS:	2018	3 NDS	
MA	TERIAL:	SOLID SA	WN				
Hem-Fir	No	. 2	(1) 1.5 X 3.5	DRY			

2x4 @ 12" o.c. DIAGRAM



Area		lx	ly		BSW	Lan	ıs	G	к	Cr
(in²)		(in⁴)	(in ⁴ )		(lbf/ft)				Creep	Factor
5.25		5.36	0.98		1.04	1		0.43		1
STRENGTH	PROPERTIE	ES								
	Fb (psi)	Ft (ps	i)	Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	Emin (	(psi) x10 ³
Base Values	850	525		150	1300		405	1300	4	470
ljusted Values	1275	788		150	1495		405	1300		470
۲	1	1		1	1		1	1		1
C _T	1	1		1	1		1	1		1
c _i	1	1		1	1		1	1		1
CF	1.5	1.5		1	1.15		1	1		1
ending Adjustm	ent Factors	C _{fu} = 1 C _r = 1								
COLUMN D	ATA									
		Unbraced Leng	th (ft)	Column End						
pan L	ength (ft)	х	Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y Ax	kis)
1	9	9	2	0	0.25	1.00	1.00	30.86	16	
PASS-FAIL										
		PASS/FAIL	MAG	GNITUDE	STRENGTH	LOCA	TION (ft)	LOAD COMBO	DURATION	FACTOR
I	Deflection (in)	PASS (89.7%)	0.031	(=L/3495)	0.300 (=L/360)		9	L		
Compressiv	ve Stress (psi)	PASS (1.8%)		373.2	379.9		0	D+L		1
Tens	le Stress (psi)	PASS (100.0%	)	0.0	708.8		9	D	(	0.9
REACTIONS	V-(lbf)	M-(lbf-ft)								
axis DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
A 9	1950	0	0	0	0	0	0	0	0	0
В 0	0	0	0	0	0	0	0	0	0	0
eaction Locatio	ı									
A LOAD LIST										
	Lef	t Magnitude	Right Mag	nitude	Load Start (ft)	Load	End (ft)	Load Type	C	Direction
Type					9		- (	Live		Z
Type Point (lbf)		-1950	-							

DATE: VITRUVIUS BUILD: CUSTOMER: PROJECT LOCATION:	3/3/2021 StruCalc		COMPANY: DESIGNED BY: REVIEWED BY:	Man	) Engineering & Desig Is Thurfjell Is Thurfjell	n, LLC
LEVEL:	Roof		LOADING:	ASD	)	
LOCATION:	(2) 2x4 (u	nbraced)	CODE:	2018	ig Code	
TYPE:	COLUMN		NDS: 2018 NDS		-	
MATERIAL:	SOLID SA	WN				
Hem-Fir No	o. 2	(2) 1.5 X 3.5	DRY			



tart (ft):	0 End (ft): 8	6 Membe	r Slope: 0/12 Actu	al Length (ft	): 8						
	Area		lx	ly		BSW	Lan	ns	G		Kcr
	(in²)		(in⁴)	(in ⁴ )		(lbf/ft)				Cre	eep Factor
	10.5		10.72	1.97		2.07	2		0.43		1
STRE	NGTH PRO										
		Fb (psi)	Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	Em	nin (psi) x10³
Base V		850	525		150	1300		405	1300		470
justed V	/alues	1275	788		150	1495		405	1300		470
	с _М	1	1		1	1		1	1		1
	с _т	1	1		1	1		1	1		1
	с _і	1	1		1	1		1	1		1
	C _F	1.5	1.5		1	1.15		1	1		1
ending A	Adjustment F	actors (	C _{fu} = 1 C _r = 1								
COLU	JMN DATA	A									
			Unbraced Lengt	ו (ft)	Column End						
ban	Lengt	n (ft)	Х	Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (	( Axis)
1	8		8	8	0	0.14	1.00	1.00	27.43	32	2
PASS	-FAII										
17,35			PASS/FAIL	MAG	GNITUDE	STRENGTH	100	ATION (ft)	LOAD COMBO		ON FACTOR
	Defle	ction (in)	PASS (96.0%)		(=L/9144)	0.267 (=L/360)		8	L	DUKAN	ONTACIÓN
Co	mpressive Str		PASS (0.9%)	0.011	211.1	213.1		0	D+L		1
		css (psi)			211.1	213.1		0	D+L		1
REAC	TIONS	Units for \	/: lbf Units for M	: lbf-ft							
axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
Α	717	1500	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0	0
eaction	Location										
LOAD											
	Туре	Left	Magnitude	Right Mag	nitude	Load Start (ft)	Load	End (ft)	Load Type		Direction
	oint (lbf)		-1500	-		8		-	Live		Z
Po	oint (lbf)		-700	-		8		-	Dead		Z
			2.07	2.07		0		8	Dead		Z

VITRUVIUS BUILD: CUSTOMER	DATE: 3/3/2021 VITRUVIUS BUILD: StruCalc CUSTOMER: PROJECT LOCATION: LEVEL: Roof		DESIGNED BY: REVIEWED BY:			n, LLC
LEVEL	Roof		LOADING:	ASD	)	
LOCATION	(3) 2x4 (u	unbraced)	CODE:	2018	ig Code	
ТҮРЕ	COLUMN	l	NDS: 2018 NDS			
MATERIAL	SOLID SA	WN				
Hem-Fir	lo. 2	(3) 1.5 X 3.5	DRY			



tart (ft): 0 E	nd (ft): 8 Membe	er Slope: 0/12 Actua	al Length (ft)	): 8						
Area	1	lx	ly		BSW	Lan	ns	G		Kcr
(in²)		(in⁴)	(in⁴)		(lbf/ft)				Cr	eep Factor
15.75	5	16.08	2.95		3.11	3		0.43		1
STRENG	TH PROPERTIE	S								
	Fb (psi)	Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	En	nin (psi) x10³
Base Value	s 850	525		150	1300		405	1300		470
justed Value	s 1275	788		150	1495		405	1300		470
	C _M 1	1		1	1		1	1		1
	C _T 1	1		1	1		1	1		1
	C _i 1	1		1	1		1	1		1
	C _F 1.5	1.5		1	1.15		1	1		1
ending Adju	stment Factors	C _{fu} = 1 C _r = 1								
COLUMN	N DATA									
		Unbraced Lengt	n (ft)	Column End						
ban	Length (ft)	х	Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (	Y Axis)
1	8	8	8	0	0.29	1.00	1.00	27.43	21.	33
PASS-FA	11									
PA33-FA	IL									
	Deflection (in)	PASS/FAIL		GNITUDE	STRENGTH		ATION (ft)	LOAD COMBO	DURAT	ION FACTOR
<b>C</b>	Deflection (in)	PASS (93.0%)		(=L/5107)	0.267 (=L/360)		8	L		
Compre	essive Stress (psi)	PASS (3.7%)		414.3	430.1		0	D+L		1
REACTIO	NS Units for	V: lbf Units for M	: lbf-ft							
axis DEA	D LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
A 252	5 4000	0	0	0	0	0	0	0	0	0
B 0	0	0	0	0	0	0	0	0	0	0
eaction Loca	tion									
A LOAD LIS	ST									
Тур		t Magnitude	Right Mag	nitude	Load Start (ft)	Load	End (ft)	Load Type		Direction
Point (	lbf)	-4000	-		8		-	Live		Z
	lbf)	-2500	-		8		-	Dead		Z
Point (										



CUS	DATE: 3/3 VITRUVIUS BUILD: Str CUSTOMER: PROJECT LOCATION:			COMPANY: DESIGNED BY: REVIEWED BY:	Man	) Engineering & Desig Is Thurfjell Is Thurfjell	n, LLC
PROJECT LO							
	LEVEL:			LOADING:	ASD	)	
LO	LOCATION:		Jnbraced)	CODE:	2018	3 International Buildin	g Code
				NDS:	2018	8 NDS	-
M	<u>ATERIAL:</u>	SOLID SA	WN				
Hem-Fir	No	o. 2	(4) 1.5 X 3.5	DRY			



tart (ft): 0	End (ft): 8 Mem	ber Slope: 0/12 Actua	al Length (ft	): 8						
Are	ea	lx	ly		BSW	Lan	ıs	G		Kcr
(in	² )	(in⁴)	(in⁴)		(lbf/ft)				Cre	ep Factor
2'	1	21.44	3.94		4.14	4		0.43		1
STRENG	TH PROPERT	TIES								
	Fb (psi	) Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	Em	in (psi) x10 ³
Base Valu	ies 850	525		150	1300		405	1300		470
justed Valu	es 1275	788		150	1495		405	1300		470
	с _М 1	1		1	1		1	1		1
	С _Т 1	1		1	1		1	1		1
	C _i 1	1		1	1		1	1		1
	C _F 1.5	1.5		1	1.15		1	1		1
ending Adj	ustment Factors	C _{fu} = 1 C _r = 1								
COLUM	N DATA									
		Unbraced Lengtl	n (ft)	Column End						
ban	Length (ft)	Х	Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (\	( Axis)
1	8	8	8	0	0.32	1.00	1.00	27.43	16	5
PASS-F	AIL									
		PASS/FAIL	MAG	GNITUDE	STRENGTH	1004	TION (ft)	LOAD COMBO	DURATI	ON FACTOR
	Deflection (in	•		(=L/4975)	0.267 (=L/360)		8	L	Donum	ontineron
Comp	ressive Stress (psi			454.0	470.3		0	– D+L		1
	•									
REACTI	ONS Units fo	or V: lbf Units for M	: lbf-ft							
axis DE	AD LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
A 40	33 5500	0	0	0	0	0	0	0	0	0
B (	0 0	0	0	0	0	0	0	0	0	0
eaction Loo	ation									
A LOAD L	СТ									
LUAD L Ty		.eft Magnitude	Right Mag	nitude	Load Start (ft)	Load	End (ft)	Load Type		Direction
Point		-4000			8	2500	-	Dead		Z
Point		-5500	-		8		-	Live		Z
	(IDI) ht (Ibf/ft)	4.14	- 4.14		0		8	Dead		Z
Self Weini							•	Deau		~

CUS	DATE: 10 VITRUVIUS BUILD: St CUSTOMER: PROJECT LOCATION: , LEVEL: M		)	COMPANY: DESIGNED BY: REVIEWED BY:	Man	) Engineering & Desig ns Thurfjell ns Thurfjell	n, LLC
	LEVEL:	Main Floo	or	LOADING:	ASD	)	
LO	CATION:	2x6 stud		CODE:	2018	3 International Buildin	ig Code
	TYPE:			NDS:	2018	3 NDS	-
M	ATERIAL:	SOLID SA	WN				
Hem-Fir	No	. 2	(1) 1.5 X 5.5	DRY			

2x6 stud DIAGRAM



	t): U End (πt):	9 Memb	er Slope: 0/12 Act	-	(ft): 9						
	Area		lx	ly		BSW	Lan	ns	G		Kcr
	(in²)		(in⁴)	(in⁴)		(lbf/ft)				Cr	eep Factor
	8.25		20.8	1.55		1.63	1		0.43		1
STR	ENGTH PRO										
		Fb (psi)	Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	En	nin (psi) x10 ³
	Values	850	525		150	1300		405	1300		470
justed	Values	1105	682		150	1430		405	1300		470
	с _М	1	1		1	1		1	1		1
	с _т	1	1		1	1		1	1		1
	с _і	1	1		1	1		1	1		1
	C _F	1.3	1.3		1	1.1		1	1		1
ending	g Adjustment F	actors	C _{fu} = 1 C _r = 1								
COL	UMN DAT	4									
			Unbraced Length	ו (ft)	Column End						
ban	Lengt	h (ft)	Х	Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (	Y Axis)
1	9	)	9	2	0	0.56	1.00	1.00	19.64	1	6
PAS	S-FAIL										
	0 17 112		PASS/FAIL	MAG	GNITUDE	STRENGTH	LOCA	TION (ft)	LOAD COMBO	DURAT	ION FACTOR
	Defle	ction (in)	PASS (88.3%)		(=L/3068)	0.300 (=L/360)		9	L		
C	ompressive St		PASS (1.2%)		789.7	799.3		0	D+L		1
	CTIONS	V-(lbf)	M-(lbf-ft)								
axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
Α	3015	3500	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0	0
eactio	n Location										
	D LIST										
LON	Туре	Left	t Magnitude	Right Mag	nitude	Load Start (ft)	Load	End (ft)	Load Type		Direction
F	Point (lbf)		-3500	-		9		-	Live		Z
	Point (lbf)		-3000	-		9		-	Dead		Z
F						-					_



CUS	DATE: 3/3/2021 VITRUVIUS BUILD: StruCalc CUSTOMER: PROJECT LOCATION: , LEVEL: Roof		C DESIGNED BY:			Mans Thurfjell				
10	LEVEL: LOCATION:		Inbraced)	LOADING: CODE:	ASD 2018	International Buildin	n Code			
	TYPE: 0 MATERIAL: 1		·	NDS:		NDS				
Hem-Fir	No		(2) 1.5 X 5.5	DRY						



Area		lx	ly		BSW	Lan	ns	G		Kcr
(in²)		(in⁴)	(in⁴)		(lbf/ft)				Cre	eep Factor
16.5		41.59	3.09		3.26	2		0.43		1
STRENGT	H PROPERTIE	S								
	Fb (psi)	Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	En	nin (psi) x10³
Base Values		525		150	1300		405	1300		470
justed Values	s 1105	682		150	1430		405	1300		470
	^с м 1	1		1	1		1	1		1
	C _T 1	1		1	1		1	1		1
	C _i 1	1		1	1		1	1		1
	C _F 1.3	1.3		1	1.1		1	1		1
		C _{fu} = 1 C _r = 1								
COLUMN	DATA	Unbraced Lengt	a (ft)	Column End						
	Longth (ft)	X	Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	Kal /d /	(Avia)
pan 1	Length (ft) 8	8	8	0	0.15	1.00	1.00	17.45	KeL/d (\ 32	
PASS-FA	L	PASS/FAIL	МАС	SNITUDE	STRENGTH	100	TION (ft)	LOAD COMBO		ON FACTOR
	Deflection (in)	PASS (96.6%)		=L/10668)	0.267 (=L/360)		8	LOAD COMBO	DUKATI	UN FACIOR
Compre	ssive Stress (psi)	PASS (2.2%)		207.6	212.4		0	D+L		1
REACTIO		V: lbf Units for M LIVE ROOF	: lbf-ft SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
A 1426		0	0	0	0	0	0	0	0	0
B 0	0	0	0	0	0	0	0	0	0	0
eaction Locat		Ū	Ŭ	Ū	Ũ	Ū	Ū	Ū	Ū	Ū
^A LOAD LIS	т									
Туре		t Magnitude	Right Magr	nitude	Load Start (ft)	Load	End (ft)	Load Type		Direction
Point (l	bf)	-1400	-		8		-	Dead		Z
Point (l		-2000	-		8		-	Live		Z
-	(lbf/ft)	3.26	3.26		0		8	Dead		Z



CUS	DATE: 3/3/2021 VITRUVIUS BUILD: StruCalc CUSTOMER: PROJECT LOCATION: LEVEL: Roof		DESIGNED BY:			Mans Thurfjell				
LOC	LEVEL: LOCATION:		nbraced)	LOADING: CODE:	ASD 2018	International Buildin	ng Code			
	TYPE: MATERIAL:			NDS:		3 NDS	<b>J</b>			
Hem-Fir	No		(3) 1.5 X 5.5	DRY						



	o wiembei	Slope: 0/12 Actua	-		DCIM			6		14 au
Area		lx (1.4)	ly		BSW	Lan	ns	G	_	Kcr
(in ² )		(in⁴)	(in ⁴ )		(lbf/ft)	2		0.40	Cre	ep Factor
24.75		62.39	4.64		4.88	3		0.43		1
STRENGTH PR	OPERTIE	S								
	Fb (psi)	Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	Em	iin (psi) x10 ³
Base Values	850	525		150	1300		405	1300		470
justed Values	1105	682		150	1430		405	1300		470
с _М	1	1		1	1		1	1		1
с _т	1	1		1	1		1	1		1
с _і	1	1		1	1		1	1		1
C _F	1.3	1.3		1	1.1		1	1		1
ending Adjustment	Factors C	C _{fu} = 1 C _r = 1								
COLUMN DAT	A									
		Unbraced Length	n (ft)	Column End						
oan Lengt	th (ft)	x	Ŷ	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (\	(Axis)
1 8	3	8	8	0	0.30	1.00	1.00	17.45	21.3	33
PASS-FAIL										
PASS-FAIL										
Defle		PASS/FAIL		GNITUDE	STRENGTH		TION (ft)	LOAD COMBO	DURATI	ON FACTOR
	ection (in)	PASS (93.3%)		(=L/5364)	0.267 (=L/360)		8	L		
Compressive St	ress (psi)	PASS (4.7%)		405.6	425.6		0	D+L		1
REACTIONS	Units for V	/: lbf Units for M	· lbf ft							
axis DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
A 4039	6000	0	0	0	0	0	0	0	0	0
В 0	0	0	0	0	0	0	0	0	0	0
eaction Location										
4										
LOAD LIST										
Туре	Left	Magnitude	Right Mag	nitude	Load Start (ft)	Load	End (ft)	Load Type		Direction
Point (lbf)		-4000	-		8		-	Dead		Z
Point (lbf)		-6000	-		8		-	Live		Z
Self Weight (lbf/ft)			4.88		0		8	Dead		Z



DATE: VITRUVIUS BUILD: CUSTOMER: PROJECT LOCATION:	3/3/2021 StruCalc	DESIGNED BY:			Mans Thurfjell				
LEVEL:			LOADING:	ASD					
LOCATION:			CODE:			ig Code			
TYPE:	COLUMN		NDS:	2018	B NDS				
MATERIAL:	SOLID SA	WN							
Hem-Fir N	o. 2	(4) 1.5 X 5.5	DRY						



Start (ft):	0 End (ft): 8	8 Member	r Slope: 0/12 Actua	al Length (ft)	): 8						
	Area		lx	ly		BSW	Lar	ns	G		Kcr
	(in²)		(in ⁴ )	(in⁴)		(lbf/ft)				Cr	eep Factor
	33		83.19	6.19		6.51	4		0.43		1
STRE	NGTH PRO	OPERTIE	S								
		Fb (psi)	Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	En	nin (psi) x10³
Base V	/alues	850	525		150	1300		405	1300		470
justed V	alues	1105	682		150	1430		405	1300		470
	с _М	1	1		1	1		1	1		1
	с _т	1	1		1	1		1	1		1
	с _і	1	1		1	1		1	1		1
	C _F	1.3	1.3		1	1.1		1	1		1
ending A	Adjustment F	actors (	C _{fu} = 1 C _r = 1								
COLU	IMN DAT	4									
			Unbraced Length	n (ft)	Column End						
pan	Lengt	h (ft)	Х	Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (	Y Axis)
1	8		8	8	0	0.43	1.00	1.00	17.45	10	5
PASS	-FAII										
17.33			PASS/FAIL	МАС	GNITUDE	STRENGTH	1004	ATION (ft)	LOAD COMBO	DURAT	ION FACTOR
	Defle	ction (in)	PASS (91.6%)		(=L/4286)	0.267 (=L/360)		8	L		
Cor	mpressive Sti	ress (psi)	PASS (10.1%)		547.0	608.6		0	D+L		1
REAC	TIONS	Units for V	/: lbf Units for M	: lbf-ft							
axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
А	8052	10000	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0	0
eaction	Location										
A											
LOAD	LIST										
	Туре	Left	Magnitude	Right Mag	nitude	Load Start (ft)	Load	End (ft)	Load Type		Direction
	int (lbf)		-8000	-		8		-	Dead		Z
						8		-	Live		Z
Ро	int (lbf)		-10000	-		0		-	LIVE		2